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DNN Training and Inference :
Challenges

1. Benchmarking



Machine Learning Benchmarking and Analysis
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MLSys 2020
ISCA 2020
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Training Benchmarks for DNNs (TBD)

9
https://github.com/tbd-ai/tbd-suite

Applications Models Dataset # of layers Dominant layer Maintainer

Image 
Classification

ResNet-50 T,M,C
Inception-v3 T,M,C

ImageNet 50 (152 max)
42 CONV Hongyu Zhu

Machine 
Translation

Seq2Seq T,M
Transformer T,M

IWSLT15 5
12

LSTM
Attention

Bojian Zheng
Andrew Pelegris

Object Detection Faster RCNN T,M
Mask RCNN P

Pascal VOC 101 CONV Hongyu Zhu
Zilun Zhang

Speech 
Recognition Deep Speech 2 P, M LibriSpeech 7 (9 max) RNN Kuei-Fang Hsueh

Jiahuang Lin
Recommendation 

System NCF P MovieLens 4 GMF, MLP Izaak Niksan

Adversarial 
Network WGAN T

Downsampled 
ImageNet 14+14 CONV Andrew Pelegris

Reinforcement 
Learning A3C T,M Atari 2600 4 CONV Mohamed Akrout

(Footnotes indicate available implementation: T for          , M for                , C for            , P for              ) 

tbd-suite.ai



Our Focus: Benchmarking and Analysis 

http://tbd-suite.ai https://mlperf.org/

Building tools to analyze ML 
performance/efficiency

Industry/Academia de-facto 
standard

http://tbd-suite.ai/
https://mlperf.org/


MLPerf Training Results v0.6 (July 10th, 2019)
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MLPerf Inference Results v0.5 (Nov. 6, 2019)
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MLPerf becomes de-facto standard
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MLPerf Training Benchmark

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, 
Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon 
Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, 
Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, 

Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David 
Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak 
Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian 

Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, 
Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi 

Yamazaki, Cliff Young, and Matei Zaharia

MLSys 2020



MLPerf Inference accepted to ISCA 2020
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DNN Training and Inference :
Challenges

2. Tools and Metrics
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Performance Metrics
● Throughput

Number of data samples processed per second
● Compute Utilization

GPU busy time over Elapsed time
● FP32/FP16/Tensor Core Utilization

Average instructions executed per cycle over Maximum instructions 
per cycle

●Memory Breakdown
Which data structures occupy how much memory

18
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BERT: Memory Profile

Feature maps are still dominant in many new models



Network Profiling
Our network profiler shows the communication traces

21



Skyline Demo at MLSys 2020

22



Interactive In-editor Performance 
Visualizations and Debugging for DNN 

Training

Geoffrey X. Yu, Tovi Grossman, 
Gennady Pekhimenko

Skyline




Tired of not knowing why your 
model is slow and/or uses up so 

much memory?



Tired of not knowing why your 
model is slow and/or uses up so 

much memory?



Skyline Interactive In-editor Performance Visualizations 
and Debugging for DNN Training

• Key performance 
metrics (throughput, 
memory usage)

• Iteration run time and 
memory footprint 
breakdowns

• Interactive visualizations 
linked to batch size 
predictions




2
7

Interactive visualizations tied to the 
code!




Skyline Interactive In-editor Performance Visualizations 
and Debugging for DNN Training

✓ Identify run time and 
memory bottlenecks

✓ Tune batch sizes during 
development

✓ Proactively design models 
with performance in mind

Skyline works with PyTorch models in Atom
$ pip install skyline-cli && \

  apm install skyline

Learn how to use Skyline to:




DNN Training and Inference :
Challenges

3. Methodology



Challenges for Metrics & Profiling
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Challenges for Metrics & Profiling (2)
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Challenges for Metrics & Profiling (3)
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DNN Training and Inference :
Trends and State-of-the-Art



DNN Training and Inference :
Trends and State-of-the-Art

1. Memory is still an Issue



Gist: Efficient Data Encoding for 
Deep Neural Network Training 

36



Our Insight

37

Lx Ly Lz

Generated 1st use 2nd use

Timeline

Feature 
map

Feature map stored in FP32 formatBaseline

Our 
approach

Forward pass Backward pass

Large temporal gap 
between 2 uses

Encode() Decode()Smaller format between 2 uses



Layer-Specific Encodings

• Key Idea:
– Use layer-specific compression

• Can be both fast and efficient

• Can be even lossless 
– Usually difficult for FP32

38



Relu Importance

39

Significant footprint is due to Relu layer
CNTK Profiling



Relu -> Pool

40

Relu Backward Propagation

Binarize – 1 bit representation
(Lossless)



Relu/Pool -> Conv

41
Sparse Storage Dense Compute

(Lossless)



Opportunity for Lossy Encoding

42

Restricting precision reduction to the 2nd use results in 
aggressive bit savings with no effect on accuracy

L1 L2 L3 L4

L4L3L2L1

Forward 
pass

Backward 
pass

2nd uses 

Precision ReductionErrorAlexNet : 16-bit 
doesn’t train

Precision reduction in forward pass quickly degrades 
accuracy



Delayed Precision Reduction

43

Training with Reduced Precision

Delayed Precision Reduction
(Lossy)



Proposed System Architecture - Gist

Gist

Memory allocation 
for new data 

structures

Identifies encoding 
opportunity

Execution graph

DNN

Modified execution 
graph

Efficient memory
sharing



Compression Ratio

45

Up to 2X compression ratio
With minimal performance overhead



Gist Summary

• Systematic memory breakdown analysis for image classification
• Layer-specific lossless encodings
– Binarization and sparse storage/dense compute

• Aggressive lossy encodings
– With delayed precision reduction

• Footprint reduction measured on real systems:
– Up to 2X reduction with only 4% performance overhead
– Further optimizations – more than 4X reduction

46



Echo: Compiler-based GPU Memory 
Footprint Reduction for LSTM RNN Training

47ISCA 2020

Bojian Zheng et al.



CHECKMATE: BREAKING THE MEMORY WALL
WITH OPTIMAL TENSOR REMATERIALIZATION

48
MLSys 2020

Paras Jain et al. (UC Berkeley)



There are many more

• NeurIPS 2019
• Another paper at ISCA 2020 (jpeg encoding for CNNs)
• Tempo, NeurIPS 2022
• …

49



DNN Training and Inference :
Trends and State-of-the-Art

2. Distributed Training: 
Algorithms and Networking



Priority-based Parameter Propagation (P3) 
for Distributed DNN Training 

51

Anand Jayarajan et al.



P3 Followups

• TicTac (MLSys’19) from UIUC
• BytePS (SOSP’19) from ByteDance
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PLink: Discovering and Exploiting Locality for Accelerated 
Distributed Training on the Public Cloud-based Distributed 
Systems

53
MLSys 2020

UW and Microsoft Research



Blink: Fast and Generic Collectives for 
Distributed ML 

54
MLSys 2020

UC Berkeley, U of Wisconsin, and Microsoft Research
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Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang1,2, Yifan Bai1, Gennady Pekhimenko1,2

1 2



Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL) 
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

60

Problem: BP imposes a strong sequential dependency along layers during the 
gradient computations.

Key idea: We propose scaling BP by Parallel Scan Algorithm (BPPSA):
• Reformulate BP into a scan operation.
• Scaled by a customized parallel algorithm.1 2 3 4 5 6 7 8

0 1 3 6 10 15 21 28
Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.
Up to 108× backward pass speedup (→ 2.17× overall speedup).



Back-propagation1 (BP) Everywhere

61
1Rumelhart et al. “Learning representations by back-propagating 
errors.”, Nature (1986) 



BP’s Strong Sequential Dependency

Linear𝑥⃗
𝜵 𝒍

62

𝛻 𝑥⃗ 𝑙=( 𝜕 𝑓 ( 𝑥⃗)
𝜕 𝑥⃗ )

𝑇

𝛻 𝑓 (𝑥⃗ )𝑙

Strong Sequential Dependency along layers.

ReLU
𝜵 𝒍

Linear

𝜵 𝒍
Loss 𝑙

(𝝏 𝒇 (⦁)
𝝏 ⦁ )

𝑻

(𝝏 𝒇 (⦁)
𝝏 ⦁ )

𝑻

𝑓 (𝑥⃗ )

𝑥⃗

𝜕 𝑓 ( 𝑥⃗ )
𝜕 𝑥⃗

Jacobian



Data Parallel Training

63

Conceptually simple, widely used. 

Effectively increases the batch size:
• Generalization gap1 
• Batch size scaling limit2

1Keskar, Nitish Shirish et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” ICLR (2017)
2Shallue, Christopher J. et al. “Measuring the Effects of Data Parallelism on Neural Network Training.” Journal of Machine Learning Research 20 (2019)

Constraint: The model must fit in 
one device.

Respects BP’s strong sequential 
dependency.

4 4

3 3

2 2

1 1

i i

Strong Sequential Dependency

Strong Sequential Dependency

Strong Sequential Dependency



Model Parallel Training

64

Used when the model cannot fit in one device.

1Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.” SOSP (2019)
2Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.” NeurIPS (2019)

Prior works on pipeline parallel training1,2 to mitigate such problem, 
but have their own limitations: 
• Linear per-device space complexity.
• Trade-off between “bubble of idleness” vs. potential convergence affect.

Conv Conv Linear

BP’s strong sequential dependency limits scalability. 

𝜵𝒊−𝟐 𝒍 𝜵𝒊−𝟏 𝒍 𝜵𝒊 𝒍 𝜵𝒊+𝟏 𝒍



Rethinking BP from an Algorithm Perspective

65

• Problems with strong sequential dependency were studied in the past 
(80’), but in a much simpler context.

• We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale BP by a customized Blelloch Scan algorithm.
• Leverage sparsity in the Jacobians.

BPPSA
BP

BP

Prior Works



What is a Scan1 Operation?

Input sequence:

Binary, associative operator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

66

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)



Linear Scan

67

1 2 3 4 5 6 7

3

6

10

15

21

28

On a single worker: perform scan 
linearly; takes n steps. 

Worker (p): an instance of execution; 
e.g., a core in a multi-core CPU 

Number of Elements (n)

With more workers: Can we achieve 
sublinear steps?

Ti
m

e

n

Step: executing the 
operator once.



Blelloch Scan: ① Up-sweep Phase

68

1 2 3 4 5 6 7 8

3 7 11 15

10 26A B

A+B

Up-sweep

Compute partial sums 
via a reduction tree.

Ti
m

e



Blelloch Scan: ② Down-sweep Phase

69

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

A

B

B

A+B

Down-sweep

Combine partial sums 
across branches.

Ti
m

e

Parallel

28



Blelloch Scan: Efficiency

70

2logn
Logarithmic 
steps along the 
critical path.

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

Ti
m

e

28



I G7 G6 G5 G4 G3 G2 G10 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J11 2 3 4 5 6 7 8

Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

71

A ◊ B = BA

Gi = Ji+1 = 

Key Insight: matrix multiplication in BP is also binary & associative!

+ Identity: I0



Scale BP by 
Blelloch Scan

2logn
Logarithmic 
steps along the 
critical path!

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4 I

G6 I J3:4 G4

G7 I J6 G6 J4 G4 J2 G2

I G7 G6 G5 G4 G3 G2

Ti
m

e

A

B

B

BA

Down-sweep

AB

Matrix 
multiplications are 
noncommutative. G1



Reconstructs the Original BP Exactly

Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd)

73

Our method produces gradients mathematically equivalent to BP.
The Jacobians are multiplied in a different order → numerical differences.
Empirically show that such differences do not effect convergence.



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP function).
Conventional ML algorithms avoid using Jacobians directly (including 
BP).

74

𝑓 (𝑥⃗ )

𝑥⃗

𝜕 𝑓 ( 𝑥⃗ )
𝜕 𝑥⃗65536

3072

768 MB

𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟏𝟎𝟎𝟎𝟎𝟎𝟎]) 𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([

𝟎𝟏𝟎𝟎𝟎𝟎𝟎])𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟎𝟎𝟏𝟎𝟎𝟎𝟎]) 𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([

𝟎𝟎𝟎𝟏𝟎𝟎𝟎])𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟎𝟎𝟎𝟎𝟏𝟎𝟎]) 𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([

𝟎𝟎𝟎𝟎𝟎𝟏𝟎])𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟎𝟎𝟎𝟎𝟎𝟎𝟏 ]) Jacobians

ML Algo.



The Jacobians of Many Operators are Sparse

75

Guaranteed ZerosPossible ZerosNon-zeros

Conv2d ReLU MaxPool2D

First three ops of VGG-11 on CIFAR-
10

Convolution ReLU Max 
Pooling

Sparsity 0.99157 0.99998 0.99994

Deterministic pattern.

Potentially better SpGEMM 
performance.

Guaranteed zeros:

Known ahead of training time.



Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,
generate directly into Compressed Sparse Row (CSR):

1 2 0 3

0 1 2 2 4

Conv2d, W

data

indices

indptr

First three ops of 
VGG-11 on CIFAR-

10

Convol
ution

ReLU Max 
Poolin

g

Jacobian 
Calculation 

Speedup

8.3×10
3 x

1.2×
106 x

1.5×1
05 x

76

0
0
0

0
0
0

0

0
0

0
0
0



Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.

77

Constant per-device space complexity!

Θ(log n) CBP Θ(n) vs. 

BPPSA BP

A B

BA

Up-sweep

A

B

B

AB

Down-sweep

In-place

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Methodology: Benchmark

Task: Bitstream Classification

78

Model: RNN

V100

h⃗𝑡
(𝑘 )=tanh (𝑊 h𝑖 𝑥𝑡

(𝑘 )+ 𝑏⃗ h𝑖 +𝑊 hh h⃗𝑡−1
(𝑘 ) +𝑏⃗hh )

0 1 0 0 1 0 0 1 1 0

C=4

𝑥𝑡(𝑘) 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.05+𝐶¿¿ (𝑘 )×0.1)¿



Methodology: Environment

79

Baseline:

Implementation: custom CUDA 10 kernels.

Hardware: RTX 2070

1.2

7.6.2

RTX 2080 Ti

7.5.1

1.1
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Baseline BPPSA

Wall-clock Time (s)

Tr
ai

ni
ng

 Lo
ss

End-to-end Training Speedup
Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

80

Numerical differences do not effect 
convergence.

2.17× speedup on the overall training time.



10 30 100 300 1k 3k 10k 30k
1.1

11

110

Backward Pass Speedup over Baseline

Sequence Length (T)

Sp
ee

du
p

Sensitivity Analysis: Model Length

81

Sequence length (T) reflects the 
model length n.

BPPSA scales with the model 
length (n);

108× = 

until being bounded by the 
number of workers (p).



Sensitivity Analysis: Number of Workers

82

Fraction of GPU per sample (1/B) 
reflects the number of workers p.

BPPSA scales with the number of 
workers (p).

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
0.16

1.6

16

Backward Pass Speedup over Baseline

Fraction of GPU per Sample (1/B)

Sp
ee

du
p
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Sensitivity Analysis: 2070 v.s. 2080Ti

83

#SMs(2070) < #SMs(2080Ti)
→ Latency(2070) > Latency(2080Ti)

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
0

5

10

15

20

25

30

Fraction of GPU per Sample (1/B)
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te
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y 

(m
s)

 p
er

 It
er

ati
on

SM: Streaming Multiprocessor; 
i.e., “Parallel Cores”.



More Results in the Paper

• End-to-end benchmarks of GRU training on IRMAS.
– A more realistic version of the RNN results.

• Pruned VGG-11 retraining on CIFAR-10.
– Microbenchmark via FLOP measurements.
– Evaluate the effectiveness of leveraging the Jacobians’ sparsity in 

CNNs.

84



Conclusion

85

BP imposes a strong sequential dependency among layers during the 
gradient computations, limiting its scalability on parallel systems.
We propose scaling Back-Propagation by Parallel Scan Algorithm 
(BPPSA):
• Reformulate BP as a scan operation.
• Scale by a customized Blelloch scan algorithm.
• Leverage sparsity in the Jacobians.

Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.
Up to 108× speedup on the backward pass (→ 2.17× overall speedup).



DNN Training and Inference :
Trends and State-of-the-Art

3. Inference: 
More Solid Quantization and 

Pruning



What is the State of Neural Network Pruning?
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MLSys 2020

MIT
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Memory-Driven Mixed Low Precision Quantization for 
Enabling Deep Network Inference on Microcontrollers

97
MLSys 2020

 Universita’ di Bologna, Bologna, Italy



DNN Training and Inference :
Trends and State-of-the-Art

4. ML Compilers



Existing Efforts: Pros and cons

• TVM, XLA, Glow, PlaidML
– Don’t perform well for training
– TVM can be 2-3 orders of magnitude worse on important kernels

• We need a new ML compiler with representative IR:
– Recent papers from our group: DietCode (MLSys’22), Roller (OSDI’22), 

Hidet (ASPLOS’23)
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