
CSC 2224: Parallel Computer
Architecture and Programming

DNN Training and Inference:
Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

Review #7
Horizontally Fused Training Array
Shang Wang et al., MLSys 2021
 OR

In-Datacenter Performance Analysis of a Tensor Processing Unit,
ISCA’17, Jouppi et al.,
https://dl.acm.org/doi/10.1145/3079856.3080246

Due Nov. 3rd

2

https://proceedings.mlsys.org/paper/2021/file/a97da629b098b75c294dffdc3e463904-Paper.pdf

DNN Training and Inference :
Challenges, Trends, State-of-the-Art

Gennady Pekhimenko, Assistant Professor

EcoSystem Group

Systems/Architecture Is a Servant for ML

4

GPU

TPU

ML Researcher

5

Performance
bottlenecks in DNN

Training

Tools Key performance
metrics

Diverse benchmark
suite with state-of-the-

art models

Analysis &
Optimizations

DNN Training and Inference :
Challenges

1. Benchmarking

Machine Learning Benchmarking and Analysis

7

MLSys 2020
ISCA 2020

8

Performance
bottlenecks in DNN

Training

Tools Key performance
metrics

Diverse benchmark
suite with state-of-the-

art models

Analysis &
Optimizations

Training Benchmarks for DNNs (TBD)

9
https://github.com/tbd-ai/tbd-suite

Applications Models Dataset # of layers Dominant layer Maintainer

Image
Classification

ResNet-50 T,M,C
Inception-v3 T,M,C

ImageNet 50 (152 max)
42 CONV Hongyu Zhu

Machine
Translation

Seq2Seq T,M
Transformer T,M

IWSLT15 5
12

LSTM
Attention

Bojian Zheng
Andrew Pelegris

Object Detection Faster RCNN T,M
Mask RCNN P

Pascal VOC 101 CONV Hongyu Zhu
Zilun Zhang

Speech
Recognition Deep Speech 2 P, M LibriSpeech 7 (9 max) RNN Kuei-Fang Hsueh

Jiahuang Lin
Recommendation

System NCF P MovieLens 4 GMF, MLP Izaak Niksan

Adversarial
Network WGAN T

Downsampled
ImageNet 14+14 CONV Andrew Pelegris

Reinforcement
Learning A3C T,M Atari 2600 4 CONV Mohamed Akrout

(Footnotes indicate available implementation: T for , M for , C for , P for)

tbd-suite.ai

Our Focus: Benchmarking and Analysis

http://tbd-suite.ai https://mlperf.org/

Building tools to analyze ML
performance/efficiency

Industry/Academia de-facto
standard

http://tbd-suite.ai/
https://mlperf.org/

MLPerf Training Results v0.6 (July 10th, 2019)

11

MLPerf Inference Results v0.5 (Nov. 6, 2019)

12

MLPerf becomes de-facto standard

13

MLPerf Training Benchmark

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos,
Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon
Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen,
Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock,

Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David
Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak
Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian

Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John,
Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi

Yamazaki, Cliff Young, and Matei Zaharia

MLSys 2020

MLPerf Inference accepted to ISCA 2020

15

DNN Training and Inference :
Challenges

2. Tools and Metrics

17

Performance
bottlenecks in DNN

Training

Tools Key performance
metrics

Diverse benchmark
suite with state-of-the-

art models

Analysis &
Optimizations

Performance Metrics
● Throughput

Number of data samples processed per second
● Compute Utilization

GPU busy time over Elapsed time
● FP32/FP16/Tensor Core Utilization

Average instructions executed per cycle over Maximum instructions
per cycle

●Memory Breakdown
Which data structures occupy how much memory

18

19

Performance
bottlenecks in DNN

Training

Tools Key performance
metrics

Diverse benchmark
suite with state-of-the-

art models

Analysis &
Optimizations

BERT: Memory Profile

Feature maps are still dominant in many new models

Network Profiling
Our network profiler shows the communication traces

21

Skyline Demo at MLSys 2020

22

Interactive In-editor Performance
Visualizations and Debugging for DNN

Training

Geoffrey X. Yu, Tovi Grossman,
Gennady Pekhimenko

Skyline

Tired of not knowing why your
model is slow and/or uses up so

much memory?

Tired of not knowing why your
model is slow and/or uses up so

much memory?

Skyline Interactive In-editor Performance Visualizations
and Debugging for DNN Training

• Key performance
metrics (throughput,
memory usage)

• Iteration run time and
memory footprint
breakdowns

• Interactive visualizations
linked to batch size
predictions

2
7

Interactive visualizations tied to the
code!

Skyline Interactive In-editor Performance Visualizations
and Debugging for DNN Training

✓ Identify run time and
memory bottlenecks

✓ Tune batch sizes during
development

✓ Proactively design models
with performance in mind

Skyline works with PyTorch models in Atom
$ pip install skyline-cli && \

 apm install skyline

Learn how to use Skyline to:

DNN Training and Inference :
Challenges

3. Methodology

Challenges for Metrics & Profiling

30

Challenges for Metrics & Profiling (2)

31

Challenges for Metrics & Profiling (3)

32

33

Performance
bottlenecks in DNN

Training

Tools Key performance
metrics

Diverse benchmark
suite with state-of-the-

art models

Analysis &
Optimizations

DNN Training and Inference :
Trends and State-of-the-Art

DNN Training and Inference :
Trends and State-of-the-Art

1. Memory is still an Issue

Gist: Efficient Data Encoding for
Deep Neural Network Training

36

Our Insight

37

Lx Ly Lz

Generated 1st use 2nd use

Timeline

Feature
map

Feature map stored in FP32 formatBaseline

Our
approach

Forward pass Backward pass

Large temporal gap
between 2 uses

Encode() Decode()Smaller format between 2 uses

Layer-Specific Encodings

• Key Idea:
– Use layer-specific compression

• Can be both fast and efficient

• Can be even lossless
– Usually difficult for FP32

38

Relu Importance

39

Significant footprint is due to Relu layer
CNTK Profiling

Relu -> Pool

40

Relu Backward Propagation

Binarize – 1 bit representation
(Lossless)

Relu/Pool -> Conv

41
Sparse Storage Dense Compute

(Lossless)

Opportunity for Lossy Encoding

42

Restricting precision reduction to the 2nd use results in
aggressive bit savings with no effect on accuracy

L1 L2 L3 L4

L4L3L2L1

Forward
pass

Backward
pass

2nd uses

Precision ReductionErrorAlexNet : 16-bit
doesn’t train

Precision reduction in forward pass quickly degrades
accuracy

Delayed Precision Reduction

43

Training with Reduced Precision

Delayed Precision Reduction
(Lossy)

Proposed System Architecture - Gist

Gist

Memory allocation
for new data

structures

Identifies encoding
opportunity

Execution graph

DNN

Modified execution
graph

Efficient memory
sharing

Compression Ratio

45

Up to 2X compression ratio
With minimal performance overhead

Gist Summary

• Systematic memory breakdown analysis for image classification
• Layer-specific lossless encodings
– Binarization and sparse storage/dense compute

• Aggressive lossy encodings
– With delayed precision reduction

• Footprint reduction measured on real systems:
– Up to 2X reduction with only 4% performance overhead
– Further optimizations – more than 4X reduction

46

Echo: Compiler-based GPU Memory
Footprint Reduction for LSTM RNN Training

47ISCA 2020

Bojian Zheng et al.

CHECKMATE: BREAKING THE MEMORY WALL
WITH OPTIMAL TENSOR REMATERIALIZATION

48
MLSys 2020

Paras Jain et al. (UC Berkeley)

There are many more

• NeurIPS 2019
• Another paper at ISCA 2020 (jpeg encoding for CNNs)
• Tempo, NeurIPS 2022
• …

49

DNN Training and Inference :
Trends and State-of-the-Art

2. Distributed Training:
Algorithms and Networking

Priority-based Parameter Propagation (P3)
for Distributed DNN Training

51

Anand Jayarajan et al.

P3 Followups

• TicTac (MLSys’19) from UIUC
• BytePS (SOSP’19) from ByteDance

52

PLink: Discovering and Exploiting Locality for Accelerated
Distributed Training on the Public Cloud-based Distributed
Systems

53
MLSys 2020

UW and Microsoft Research

Blink: Fast and Generic Collectives for
Distributed ML

54
MLSys 2020

UC Berkeley, U of Wisconsin, and Microsoft Research

55

56

57

58

Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang1,2, Yifan Bai1, Gennady Pekhimenko1,2

1 2

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

60

Problem: BP imposes a strong sequential dependency along layers during the
gradient computations.

Key idea: We propose scaling BP by Parallel Scan Algorithm (BPPSA):
• Reformulate BP into a scan operation.
• Scaled by a customized parallel algorithm.1 2 3 4 5 6 7 8

0 1 3 6 10 15 21 28
Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.
Up to 108× backward pass speedup (→ 2.17× overall speedup).

Back-propagation1 (BP) Everywhere

61
1Rumelhart et al. “Learning representations by back-propagating
errors.”, Nature (1986)

BP’s Strong Sequential Dependency

Linear𝑥⃗
𝜵 𝒍

62

𝛻 𝑥⃗ 𝑙=(𝜕 𝑓 (𝑥⃗)
𝜕 𝑥⃗)

𝑇

𝛻 𝑓 (𝑥⃗)𝑙

Strong Sequential Dependency along layers.

ReLU
𝜵 𝒍

Linear

𝜵 𝒍
Loss 𝑙

(𝝏 𝒇 (⦁)
𝝏 ⦁)

𝑻

(𝝏 𝒇 (⦁)
𝝏 ⦁)

𝑻

𝑓 (𝑥⃗)

𝑥⃗

𝜕 𝑓 (𝑥⃗)
𝜕 𝑥⃗

Jacobian

Data Parallel Training

63

Conceptually simple, widely used.

Effectively increases the batch size:
• Generalization gap1
• Batch size scaling limit2

1Keskar, Nitish Shirish et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” ICLR (2017)
2Shallue, Christopher J. et al. “Measuring the Effects of Data Parallelism on Neural Network Training.” Journal of Machine Learning Research 20 (2019)

Constraint: The model must fit in
one device.

Respects BP’s strong sequential
dependency.

4 4

3 3

2 2

1 1

i i

Strong Sequential Dependency

Strong Sequential Dependency

Strong Sequential Dependency

Model Parallel Training

64

Used when the model cannot fit in one device.

1Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.” SOSP (2019)
2Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.” NeurIPS (2019)

Prior works on pipeline parallel training1,2 to mitigate such problem,
but have their own limitations:
• Linear per-device space complexity.
• Trade-off between “bubble of idleness” vs. potential convergence affect.

Conv Conv Linear

BP’s strong sequential dependency limits scalability.

𝜵𝒊−𝟐 𝒍 𝜵𝒊−𝟏 𝒍 𝜵𝒊 𝒍 𝜵𝒊+𝟏 𝒍

Rethinking BP from an Algorithm Perspective

65

• Problems with strong sequential dependency were studied in the past
(80’), but in a much simpler context.

• We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale BP by a customized Blelloch Scan algorithm.
• Leverage sparsity in the Jacobians.

BPPSA
BP

BP

Prior Works

What is a Scan1 Operation?

Input sequence:

Binary, associative operator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

66

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)

Linear Scan

67

1 2 3 4 5 6 7

3

6

10

15

21

28

On a single worker: perform scan
linearly; takes n steps.

Worker (p): an instance of execution;
e.g., a core in a multi-core CPU

Number of Elements (n)

With more workers: Can we achieve
sublinear steps?

Ti
m

e

n

Step: executing the
operator once.

Blelloch Scan: ① Up-sweep Phase

68

1 2 3 4 5 6 7 8

3 7 11 15

10 26A B

A+B

Up-sweep

Compute partial sums
via a reduction tree.

Ti
m

e

Blelloch Scan: ② Down-sweep Phase

69

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

A

B

B

A+B

Down-sweep

Combine partial sums
across branches.

Ti
m

e

Parallel

28

Blelloch Scan: Efficiency

70

2logn
Logarithmic
steps along the
critical path.

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

Ti
m

e

28

I G7 G6 G5 G4 G3 G2 G10 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J11 2 3 4 5 6 7 8

Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

71

A ◊ B = BA

Gi = Ji+1 =

Key Insight: matrix multiplication in BP is also binary & associative!

+ Identity: I0

Scale BP by
Blelloch Scan

2logn
Logarithmic
steps along the
critical path!

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4 I

G6 I J3:4 G4

G7 I J6 G6 J4 G4 J2 G2

I G7 G6 G5 G4 G3 G2

Ti
m

e

A

B

B

BA

Down-sweep

AB

Matrix
multiplications are
noncommutative. G1

Reconstructs the Original BP Exactly

Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd)

73

Our method produces gradients mathematically equivalent to BP.
The Jacobians are multiplied in a different order → numerical differences.
Empirically show that such differences do not effect convergence.

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP function).
Conventional ML algorithms avoid using Jacobians directly (including
BP).

74

𝑓 (𝑥⃗)

𝑥⃗

𝜕 𝑓 (𝑥⃗)
𝜕 𝑥⃗65536

3072

768 MB

𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟏𝟎𝟎𝟎𝟎𝟎𝟎]) 𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([

𝟎𝟏𝟎𝟎𝟎𝟎𝟎])𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟎𝟎𝟏𝟎𝟎𝟎𝟎]) 𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([

𝟎𝟎𝟎𝟏𝟎𝟎𝟎])𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟎𝟎𝟎𝟎𝟏𝟎𝟎]) 𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([

𝟎𝟎𝟎𝟎𝟎𝟏𝟎])𝑪𝒐𝒏𝒗𝟐𝒅𝑮𝒓𝒂𝒅 ([
𝟎𝟎𝟎𝟎𝟎𝟎𝟏]) Jacobians

ML Algo.

The Jacobians of Many Operators are Sparse

75

Guaranteed ZerosPossible ZerosNon-zeros

Conv2d ReLU MaxPool2D

First three ops of VGG-11 on CIFAR-
10

Convolution ReLU Max
Pooling

Sparsity 0.99157 0.99998 0.99994

Deterministic pattern.

Potentially better SpGEMM
performance.

Guaranteed zeros:

Known ahead of training time.

Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,
generate directly into Compressed Sparse Row (CSR):

1 2 0 3

0 1 2 2 4

Conv2d, W

data

indices

indptr

First three ops of
VGG-11 on CIFAR-

10

Convol
ution

ReLU Max
Poolin

g

Jacobian
Calculation

Speedup

8.3×10
3 x

1.2×
106 x

1.5×1
05 x

76

0
0
0

0
0
0

0

0
0

0
0
0

Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.

77

Constant per-device space complexity!

Θ(log n) CBP Θ(n) vs.

BPPSA BP

A B

BA

Up-sweep

A

B

B

AB

Down-sweep

In-place

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:

Methodology: Benchmark

Task: Bitstream Classification

78

Model: RNN

V100

h⃗𝑡
(𝑘)=tanh (𝑊 h𝑖 𝑥𝑡

(𝑘)+ 𝑏⃗ h𝑖 +𝑊 hh h⃗𝑡−1
(𝑘) +𝑏⃗hh)

0 1 0 0 1 0 0 1 1 0

C=4

𝑥𝑡(𝑘) 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.05+𝐶¿¿ (𝑘)×0.1)¿

Methodology: Environment

79

Baseline:

Implementation: custom CUDA 10 kernels.

Hardware: RTX 2070

1.2

7.6.2

RTX 2080 Ti

7.5.1

1.1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.2

1.4

1.6

1.8

2

2.2

2.4

Baseline BPPSA

Wall-clock Time (s)

Tr
ai

ni
ng

 Lo
ss

End-to-end Training Speedup
Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

80

Numerical differences do not effect
convergence.

2.17× speedup on the overall training time.

10 30 100 300 1k 3k 10k 30k
1.1

11

110

Backward Pass Speedup over Baseline

Sequence Length (T)

Sp
ee

du
p

Sensitivity Analysis: Model Length

81

Sequence length (T) reflects the
model length n.

BPPSA scales with the model
length (n);

108× =

until being bounded by the
number of workers (p).

Sensitivity Analysis: Number of Workers

82

Fraction of GPU per sample (1/B)
reflects the number of workers p.

BPPSA scales with the number of
workers (p).

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
0.16

1.6

16

Backward Pass Speedup over Baseline

Fraction of GPU per Sample (1/B)

Sp
ee

du
p

10 30 100 300 1k 3k 10k 30k
0

5

10

15

20

25

30

35

40

2070 2080Ti

Sequence Length (T)

La
te

nc
y

(m
s)

 p
er

 It
er

ati
on

Sensitivity Analysis: 2070 v.s. 2080Ti

83

#SMs(2070) < #SMs(2080Ti)
→ Latency(2070) > Latency(2080Ti)

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
0

5

10

15

20

25

30

Fraction of GPU per Sample (1/B)

La
te

nc
y

(m
s)

 p
er

 It
er

ati
on

SM: Streaming Multiprocessor;
i.e., “Parallel Cores”.

More Results in the Paper

• End-to-end benchmarks of GRU training on IRMAS.
– A more realistic version of the RNN results.

• Pruned VGG-11 retraining on CIFAR-10.
– Microbenchmark via FLOP measurements.
– Evaluate the effectiveness of leveraging the Jacobians’ sparsity in

CNNs.

84

Conclusion

85

BP imposes a strong sequential dependency among layers during the
gradient computations, limiting its scalability on parallel systems.
We propose scaling Back-Propagation by Parallel Scan Algorithm
(BPPSA):
• Reformulate BP as a scan operation.
• Scale by a customized Blelloch scan algorithm.
• Leverage sparsity in the Jacobians.

Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.
Up to 108× speedup on the backward pass (→ 2.17× overall speedup).

DNN Training and Inference :
Trends and State-of-the-Art

3. Inference:
More Solid Quantization and

Pruning

What is the State of Neural Network Pruning?

87
MLSys 2020

MIT

88

89

90

91

92

93

94

95

96

Memory-Driven Mixed Low Precision Quantization for
Enabling Deep Network Inference on Microcontrollers

97
MLSys 2020

 Universita’ di Bologna, Bologna, Italy

DNN Training and Inference :
Trends and State-of-the-Art

4. ML Compilers

Existing Efforts: Pros and cons

• TVM, XLA, Glow, PlaidML
– Don’t perform well for training
– TVM can be 2-3 orders of magnitude worse on important kernels

• We need a new ML compiler with representative IR:
– Recent papers from our group: DietCode (MLSys’22), Roller (OSDI’22),

Hidet (ASPLOS’23)

99

CSC 2224: Parallel Computer
Architecture and Programming

DNN Training and Inference :
Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

	CSC 2224: Parallel Computer Architecture and Programming DNN T
	Review #7
	DNN Training and Inference : Challenges, Trends, State-of-the-A
	Systems/Architecture Is a Servant for ML
	Slide 5
	DNN Training and Inference : Challenges 1. Benchmarking
	Machine Learning Benchmarking and Analysis
	Slide 8
	Training Benchmarks for DNNs (TBD)
	Our Focus: Benchmarking and Analysis
	MLPerf Training Results v0.6 (July 10th, 2019)
	MLPerf Inference Results v0.5 (Nov. 6, 2019)
	MLPerf becomes de-facto standard
	MLPerf Training Benchmark
	MLPerf Inference accepted to ISCA 2020
	DNN Training and Inference : Challenges 2. Tools and Metrics
	Slide 17
	Performance Metrics
	Slide 19
	BERT: Memory Profile
	Network Profiling
	Skyline Demo at MLSys 2020
	Interactive In-editor Performance Visualizations and Debugging
	Tired of not knowing why your model is slow and/or uses up so m
	Tired of not knowing why your model is slow and/or uses up so m (2)
	Interactive In-editor Performance Visualizations and Debugging (2)
	Slide 27
	Interactive In-editor Performance Visualizations and Debugging (3)
	DNN Training and Inference : Challenges 3. Methodology
	Challenges for Metrics & Profiling
	Challenges for Metrics & Profiling (2)
	Challenges for Metrics & Profiling (3)
	Slide 33
	DNN Training and Inference : Trends and State-of-the-Art
	DNN Training and Inference : Trends and State-of-the-Art 1. Me
	Gist: Efficient Data Encoding for Deep Neural Network Training
	Our Insight
	Layer-Specific Encodings
	Relu Importance
	Relu -> Pool
	Relu/Pool -> Conv
	Opportunity for Lossy Encoding
	Delayed Precision Reduction
	Proposed System Architecture - Gist
	Compression Ratio
	Gist Summary
	Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RN
	CHECKMATE: BREAKING THE MEMORY WALL WITH OPTIMAL TENSOR REMATER
	There are many more
	DNN Training and Inference : Trends and State-of-the-Art 2. Di
	Priority-based Parameter Propagation (P3) for Distributed DNN T
	P3 Followups
	PLink: Discovering and Exploiting Locality for Accelerated Dist
	Blink: Fast and Generic Collectives for Distributed ML
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Scaling Back-Propagation by Parallel Scan Algorithm
	Executive Summary
	Back-propagation1 (BP) Everywhere
	BP’s Strong Sequential Dependency
	Data Parallel Training
	Model Parallel Training
	Rethinking BP from an Algorithm Perspective
	What is a Scan1 Operation?
	Linear Scan
	Blelloch Scan: ① Up-sweep Phase
	Blelloch Scan: ② Down-sweep Phase
	Blelloch Scan: Efficiency
	Reformulate BP as a Scan Operation
	Scale BP by Blelloch Scan
	Reconstructs the Original BP Exactly
	Jacobians are Memory & Compute Hungry
	The Jacobians of Many Operators are Sparse
	Fast Sparse Jacobians Generation
	Complexity Analysis
	Methodology: Benchmark
	Methodology: Environment
	End-to-end Training Speedup
	Sensitivity Analysis: Model Length
	Sensitivity Analysis: Number of Workers
	Sensitivity Analysis: 2070 v.s. 2080Ti
	More Results in the Paper
	Conclusion
	DNN Training and Inference : Trends and State-of-the-Art 3. In
	What is the State of Neural Network Pruning?
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Memory-Driven Mixed Low Precision Quantization for Enabling Dee
	DNN Training and Inference : Trends and State-of-the-Art 4. ML
	Existing Efforts : Pros and cons
	CSC 2224: Parallel Computer Architecture and Programming DNN T (2)

