CSC 2224: Parallel Computer **Architecture and Programming DNN Training and Inference:** Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko University of Toronto Fall 2022

Review #7

Horizontally Fused Training Array Shang Wang et al., MLSys 2021 OR

In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA'17, Jouppi et al., https://dl.acm.org/doi/10.1145/3079856.3080246

Due Nov. 3rd

DNN Training and Inference : Challenges, Trends, State-of-the-Art

Gennady Pekhimenko, Assistant Professor

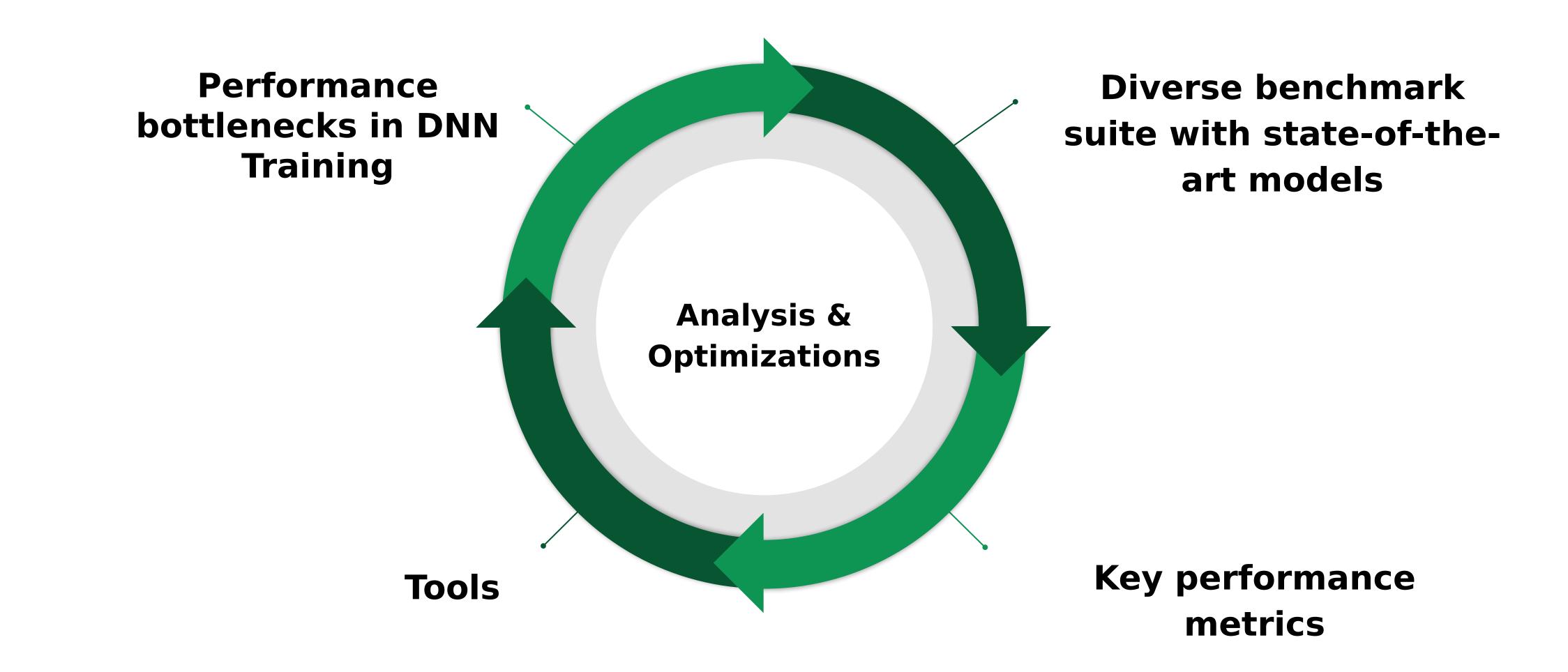
EcoSystem Group

Systems/Architecture Is a Servant for ML

ML Researcher

mxnet

4

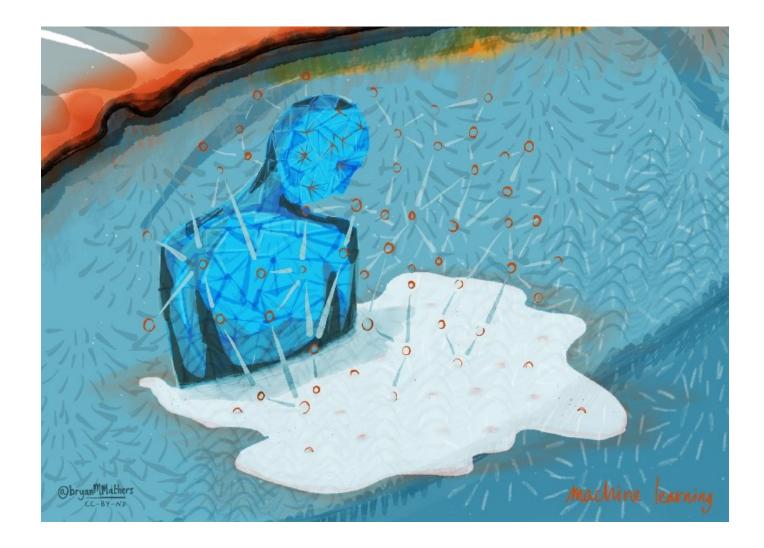


DNN Training and Inference : Challenges

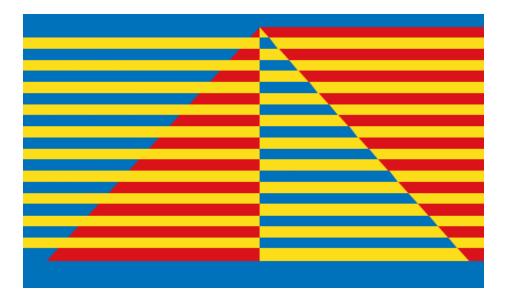
1. Benchmarking

Machine Learning Benchmarking and Analysis

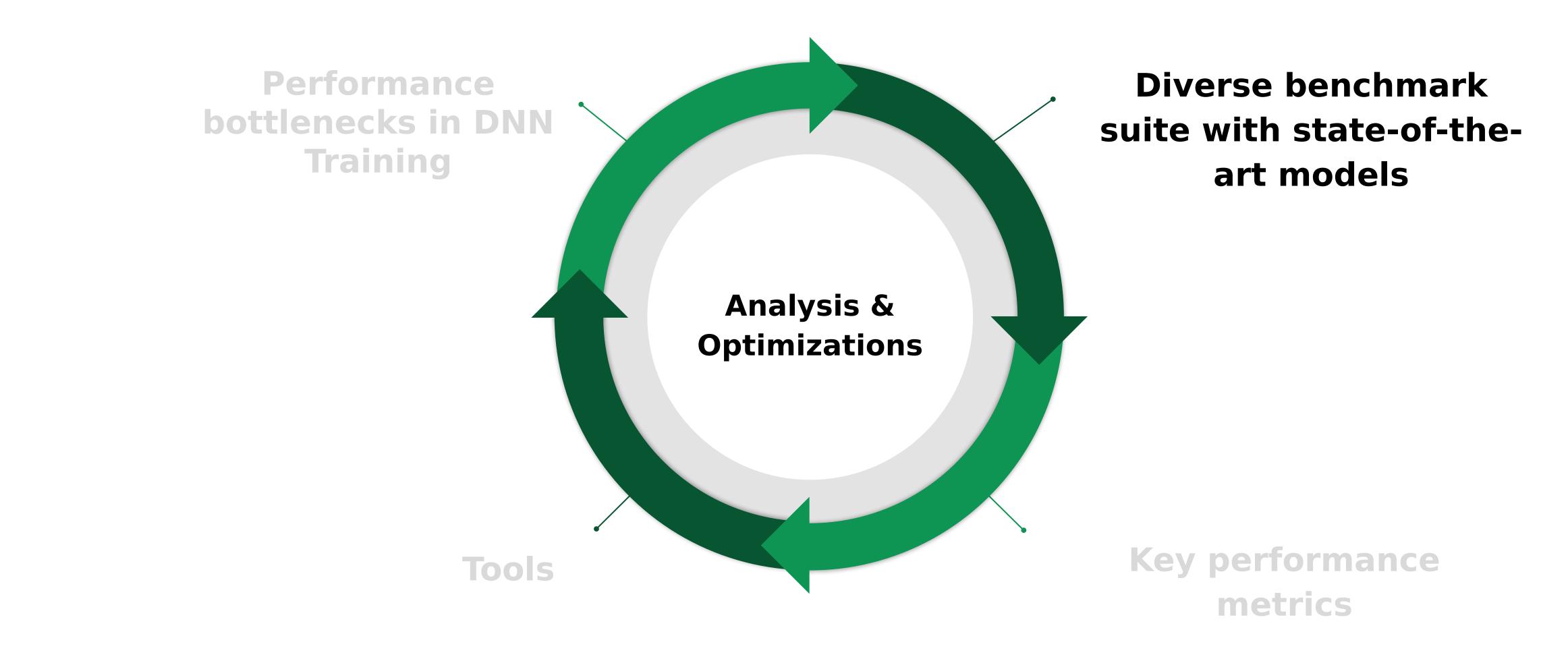
MLSys 2020



ISCA 2020



7



Training Benchmarks for DNNs (TBD)

Applications	Models	Dataset	# of layers	Dominant layer	Maintainer		
Image Classification	ResNet-50 _{T,M,C} Inception-v3 _{T,M,C}	ImageNet	50 (152 max) 42	CONV	Hongyu Zhu		
Machine Translation	Seq2Seq _{T,M} Transformer _{T,M}	IWSLT15	5 12	LSTM Attention	Bojian Zheng Andrew Pelegris		
Object Detection	Faster RCNN _{T,M} Mask RCNN _P	Pascal VOC	101	CONV	Hongyu Zhu Zilun Zhang		
Speech Recognition	Deep Speech 2 _{P, M}	LibriSpeech	7 (9 max)	RNN	Kuei-Fang Hsueh Jiahuang Lin		
Recommendation System	NCF _P	MovieLens	4	GMF, MLP	Izaak Niksan		
Adversarial Network	WGAN _T	Downsampled ImageNet	14+14	CONV	Andrew Pelegris		
Reinforcement Learning	A3C _{т,м}	Atari 2600	4	CONV	Mohamed Akrout		
(Footnotes indicate available implementation: T for $for M$ for $mxnet$, C for $CNTK$, P for pytored							

https://github.com/tbd-ai/tbd-suite

Our Focus: Benchmarking and Analysis

TBD Benchmark Suite

Training Benchmark for DNNs

Benchmarks Datasets Tools Analysis People

EcoSystem (Univ. of Toronto) + Fiddle (MSR)

TBD - Training Benchmark for DNNs

TBD is a new benchmark suite for DNN training that currently covers six major application domains and eight different state-of-the-art models. The applications in this suite are selected based on extensive conversations with ML developers and users from both industry and academia. For all application domains we select recent models capable of delivering state-of-the-art results. We intend to continually expand TBD with new applications and models based on feedback and support from the community.

This is a joint project between the EcoSystem Research Group at University of Toronto and Project Fiddle at Microsoft Research, Redmond. We also have collaborators from UBC and University of Michigan.

Our benchmark suite is now open sourced on Github

Read Full Arxiv Paper BibTeX Reference SysML Short Paper						
Application	Model	Number of Layers	Dominant Layer	Implementations	Maintainers	
Image classification	ResNet-50 Inception-v3	50 (152 max) 42	CONV	TensorFlow, MXNet, CNTK	Hongyu Zhu	
Machine translation	Seq2Seq	5	LSTM	TensorFlow, MXNet	Bojian Zhang	

Building tools to analyze ML performance/efficiency

http://tbd-suite.ai

A broad ML benchmark suite for measuring performance of ML software frameworks, ML hardware accelerators, and ML cloud platforms.

Submission Deadline

Industry/Academia de-facto standard

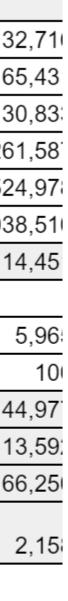
https://mlperf.org/

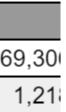
MLPerf Training Results v0.6 (July 10th, 2019)

								Benchmark results (minutes)									
								lmage classifi- cation	Object detection, light- weight	Object detection, heavy-wt.	Translation , recurrent	Translation , non-recur.	0.010	Reinforce- ment Learning			
								ImageNet	сосо	сосо	WMT E-G	WMT E-G	MovieLens- 20M	Go			
#		Submitter	System	Processor #	# Accelerator	#	122170180	ResNet-50 v1.5	2.5.8 (122) 200 (2015)	Mask- R-CNN	NMT	Transformer	NCF	Mini Go	Details	Code	
A	vailab	e in cloud				2											
0.	.6-1	Google	TPUv3.32		TPUv3	16	TensorFlow, TPU 1.14.1.dev	42.19	12.61	107.03	12.25	10.20	[1]		details	<u>code</u>	
0.	.6-2	Google	TPUv3.128		TRUv3	64	TensorFlow, TPU 1.14.1.dev	11.22	3.89	57.46	4.62	3.85	[1]		<u>details</u>	<u>code</u>	
0.	.6-3	Google	TPUv3.256		TPUv3	128	TensorFlow, TPU 1.14.1.dev	6.86	2.76	35.60	3.53	2.81	[1]		details	<u>code</u>	
0.	.6-4	Google	TPUv3.512		TPUv3	256	TensorFlow, TPU 1.14.1.dev	3.85	1.79		2.51	1.58	[1]		details	<u>code</u>	
0.	.6-5	Google	TPUv3.1024		TPUv3	512	TensorFlow, TPU 1.14.1.dev	2.27	1.34		2.11	1.05	[1]		<u>details</u>	<u>code</u>	
0.	.6-6	Google	TPUv3.2048		TPUv3	1024	TensorFlow, TPU 1.14.1.dev	1.28	1.21			0.85	[1]		<u>details</u>	<u>code</u>	
A	vailabl	e on -pre mi	se														
0.	.6-7	Intel	32x 2S CLX 8260L	CLX 8260L 6	64		TensorFlow						[1]	14.43	details	<u>code</u>	
0.	.6-8	NVIDIA	DGX-1		Tesla V100	8	MXNet, NGC19.05	115.22					[1]		details	<u>code</u>	
0.	.6-9	NVIDIA	DGX-1		Tesla V100	8	PyTorch, NGC19.05		22.36	207.48	20.55	20.34	[1]		details	code	
0.	.6-10	NVIDIA	DGX-1		Tesla V100	8	TensorFlow, NGC19.05						[1]	27.39	details	<u>code</u>	
0.	.6-11	NVIDIA	3x DGX-1		Tesla V100	24	TensorFlow, NGC19.05						[1]	13.57	details	<u>code</u>	
0.	.6-12	NVIDIA	24x DGX-1		Testa V100	192	PyTorch, NGC19.05			22.03			[1]		<u>details</u>	<u>code</u>	
0.	.6-13	NVIDIA	30x DGX-1		Tesla V100	240	PyTorch, NGC19.05		2.67				[1]		details	code	
			48x DGX-1		Tesla V100		PyTorch, NGC19.05				1.99		[1]		<u>details</u>	<u>code</u>	
	10.10 H 10.10 H		60x DGX-1		Tesla V100	121110000	PyTorch, NGC19.05					2.05	[1]		details	<u>code</u>	
		NVIDIA	130x DGX-1		Tesla V100		MXNet, NGC19.05	1.69					[1]		details	<u>code</u>	
			DGX-2		Tesla V100		MXNet, NGC19.05	57.87					[1]		<u>details</u>	<u>code</u>	
0.	.6-18	NVIDIA	DGX-2		Tesla V100	16	PyTorch, NGC19.05		12.21	101.00	10.94	11.04	[1]		details	code	

MLPerf Inference Results v0.5 (Nov. 6, 2019)

Inf-0.5-14	dividiti	Firefly-RK3399 (firefly)	80.12				391.02			
Inf-0.5-15	Google	Cloud TPU v3							16,014.29	32
Inf-0.5-16	Google	2x Cloud TPU v3								65
Inf-0.5-17	Google	4x Cloud TPU v3								130
Inf-0.5-18	Google	8x Cloud TPU v3								261
Inf-0.5-19	Google	16x Cloud TPU v3								524
Inf-0.5-20	Google	32x Cloud TPU v3								1,038
Inf-0.5-21	Habana Labs	HL-102-Goya PCI-board					0.24	700.00		14
Inf-0.5-22	Intel	Intel® Xeon® Platinum 9200 processors								
Inf-0.5-23	Intel	Intel® Xeon® Platinum 9200 processors	0.49		27,244.81	29,203.30	1.37		4,850.62	5
Inf-0.5-24	Intel	DELL ICL i3 1005G1	3.55			507.71	13.58			
Inf-0.5-25	NVIDIA	Supermicro 4029GP-TRT-OTO-28 8xT4 (T4x8)		6,320.00	135,073.00	141,807.00		1,920.00	41,546.64	44
Inf-0.5-26	NVIDIA	Supermicro 6049GP-TRT-OTO-29 20xT4 (T4x20)							103,532.10	113
Inf-0.5-27	NVIDIA	SCAN 3XS DBP T496X2 Fluid (TitanRTXx4)		8,704.00	199,098.30	222,388.00		2,560.00	60,030.57	66
Inf-0.5-28	NVIDIA	NVIDIA Jetson AGX Xavier (Xavier)	0.58	302.00		6,520.75	2.04	100.00		2
Inf-0.5-29	Qualcomm	SDM855 QRD	3.02				8.95			
CATEGORY.	Preview									
Inf-0.5-31	Alibaba T-Head	Alibaba HanGuang					0.17	2,692.00	45,169.48	69
Inf-0.5-32	Centaur Technology	Centaur Technology Reference Design v1.0	0.33			6,042.34	1.05			1





MLPerf becomes de-facto standard

MLPerf Training Benchmark

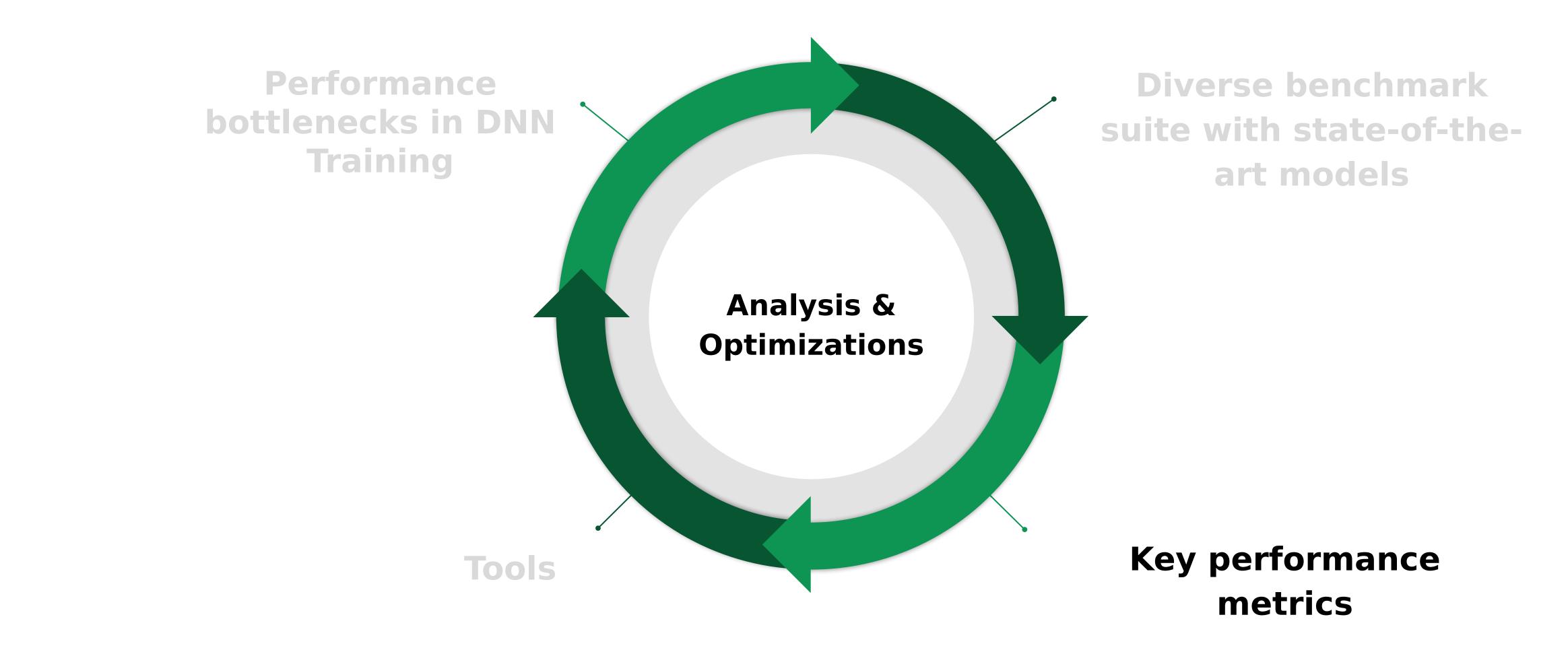
Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff Young, and Matei Zaharia

MLSvs 2020

MLPerf Inference accepted to ISCA 2020

DNN Training and Inference : Challenges

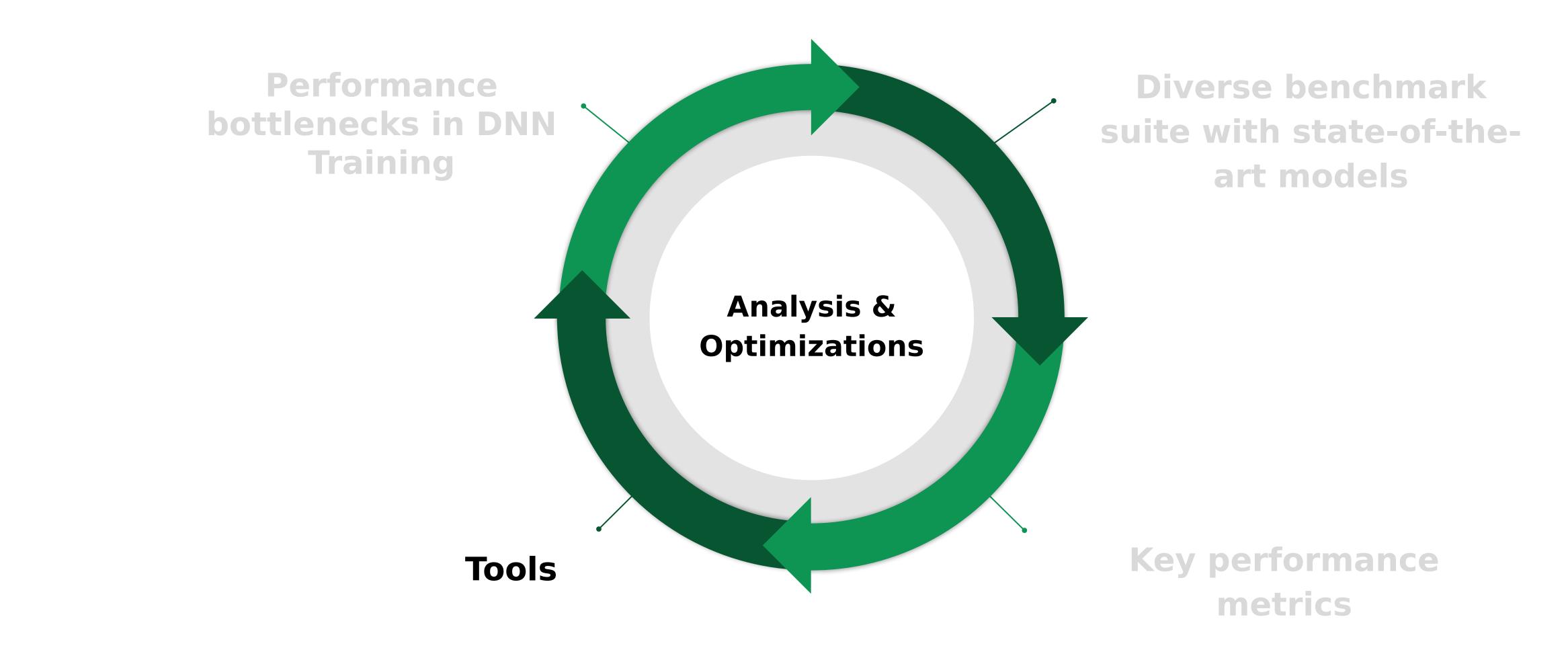
2. Tools and Metrics



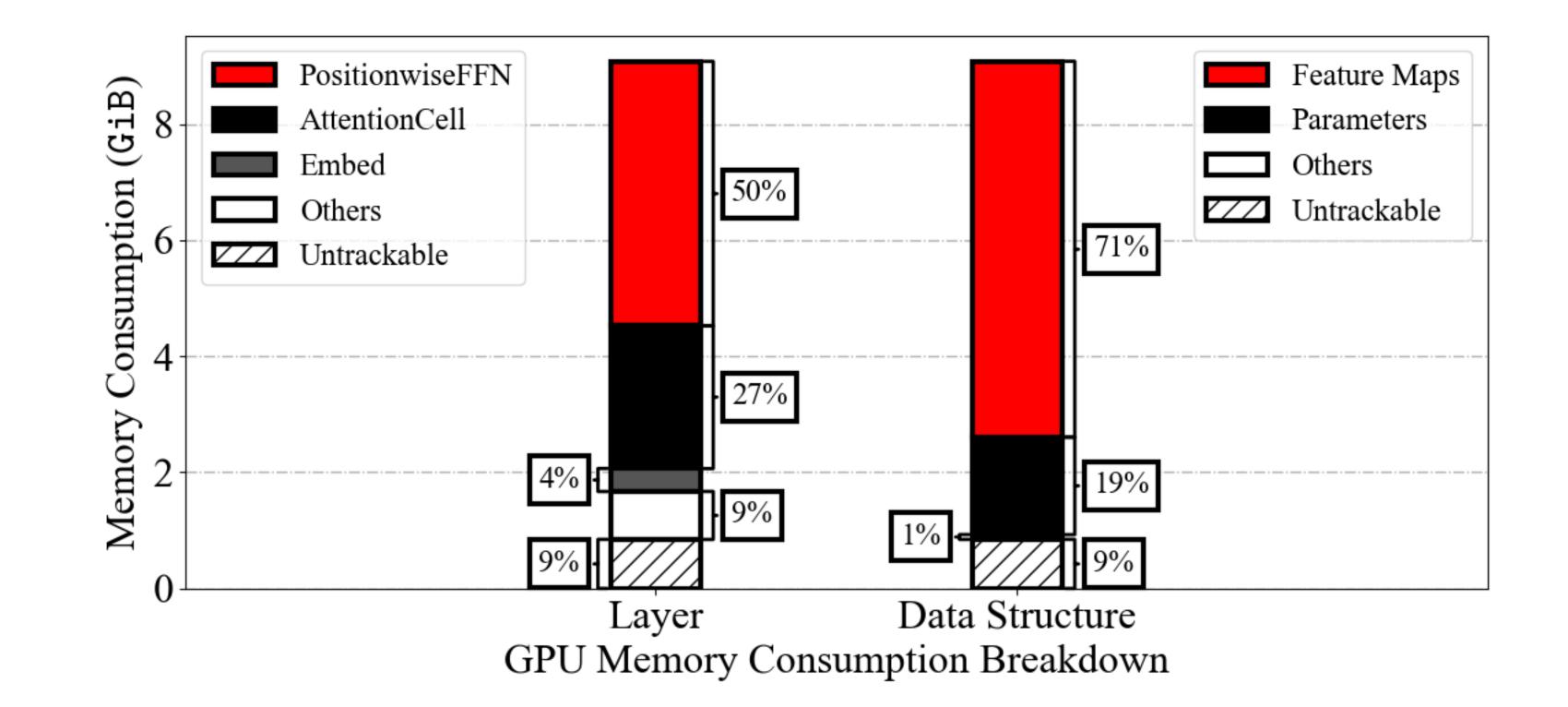
Performance Metrics

- Throughput Number of data samples processed per second
- Compute Utilization GPU busy time over Elapsed time
- FP32/FP16/Tensor Core Utilization per cycle
- Memory Breakdown Which data structures occupy how much memory

Average instructions executed per cycle over Maximum instructions

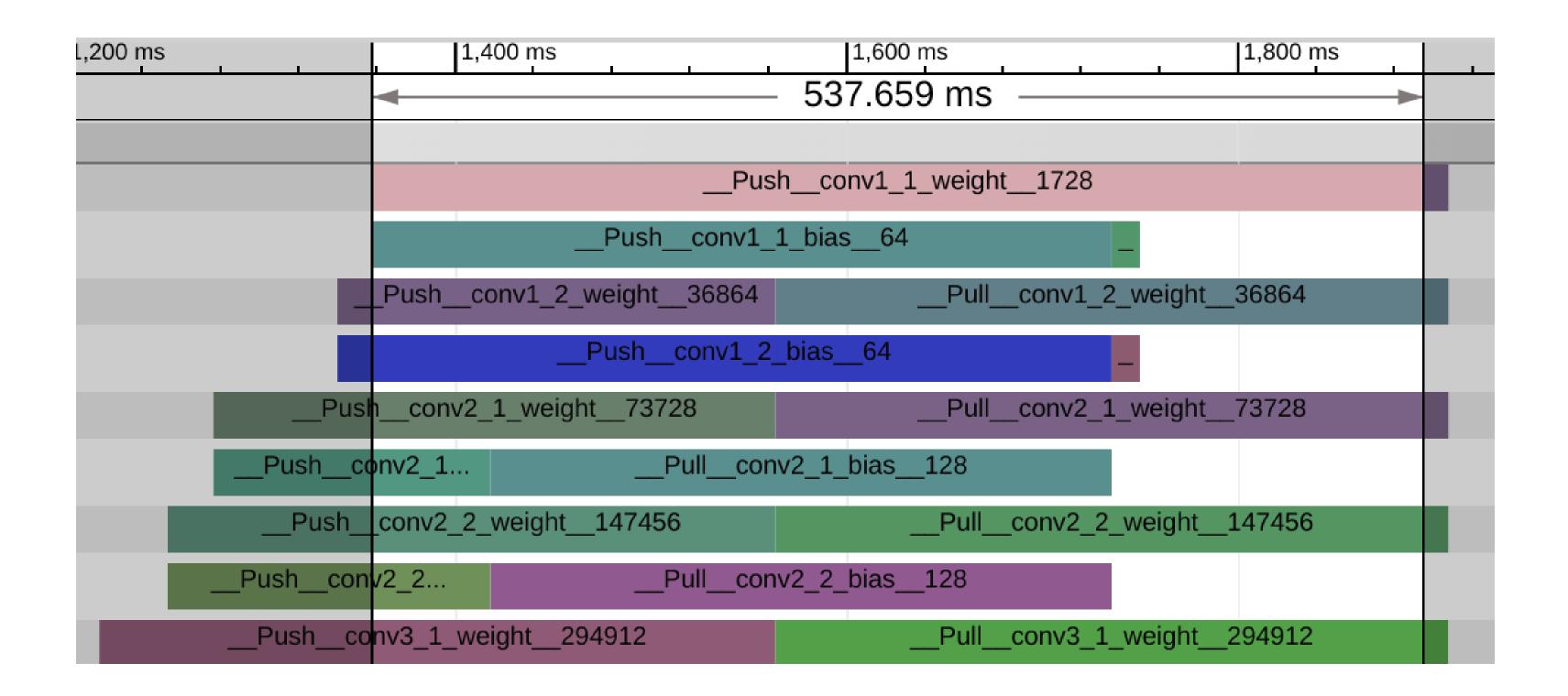


BERT: Memory Profile



Feature maps are still dominant in many new models

Network Profiling Our network profiler shows the communication traces



Skyline Demo at MLSys 2020

Maskyline

Interactive In-editor Performance Visualizations and Debugging for DNN Training

Geoffrey X. Yu, Tovi Grossman, **Gennady Pekhimenko**

112

173

174 175

176

177

178

179

180 181

182

183

• 184

• 185

• 186

• 187

188

• 189

• 190

• 191

• 192

193 • 194

• 195

• 196

• 198

197

199

200

201

202

203

204

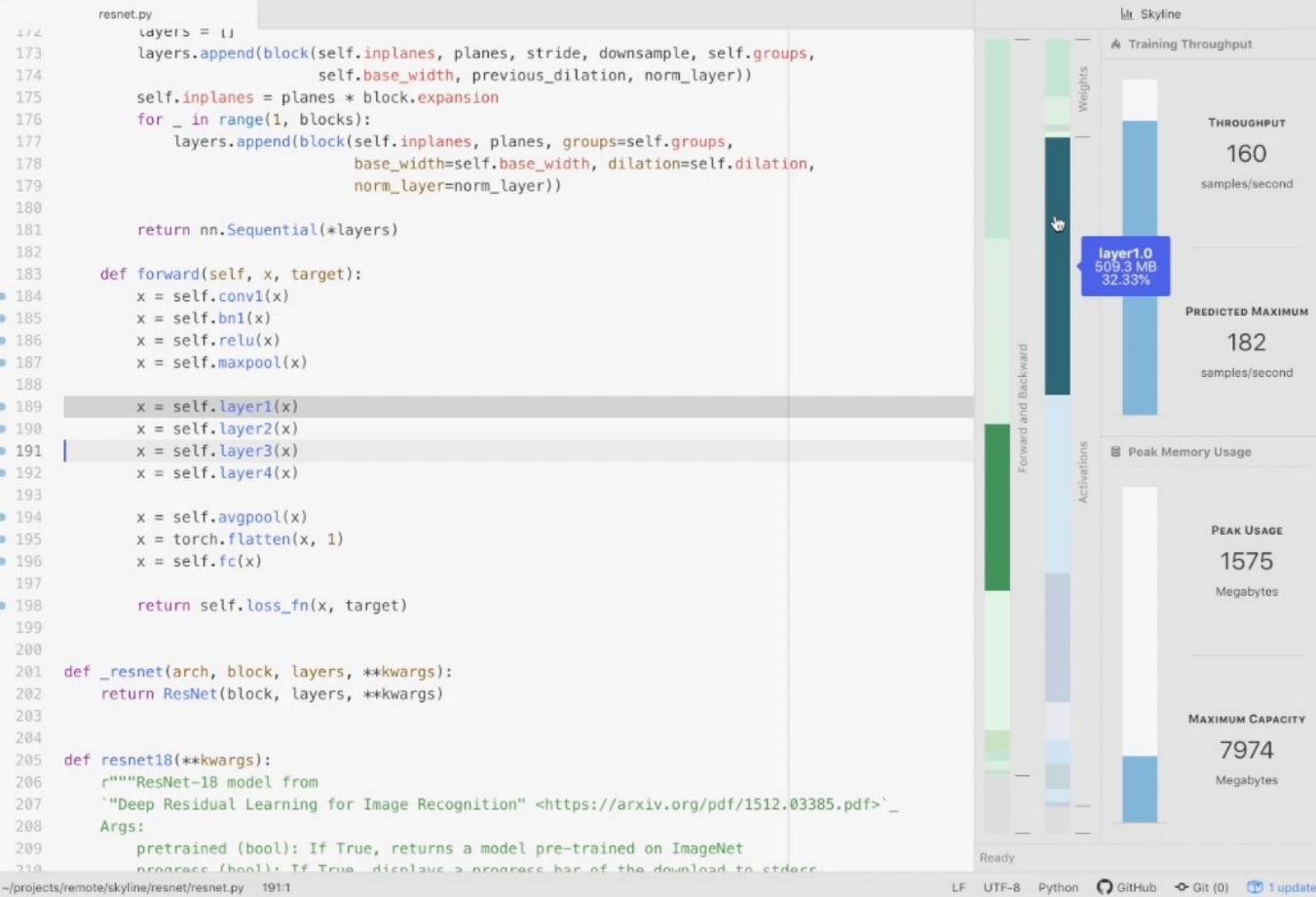
206

207

208

209

? resnet.py — ~/projects/remote/skyline/resnet



THROUGHPUT 160 samples/second PREDICTED MAXIMUM 182 samples/second PEAK USAGE 1575 Megabytes MAXIMUM CAPACITY 7974 Megabytes

Tired of not knowing why your model is **slow** and/or uses up so much memory?

Any tips on identifying speed bottlenecks (profiling) with @PyTorch? Right now bumbling along with cProfile.

♥ 28 12:16 PM - May 26, 2017

See Sam Bowman's other Tweets

Sam Bowman @sleepinyourhat · May 26, 2017 Any tips on identifying speed bottlenecks (pr @PyTorch? Right now bumbling along with (

Joachim Hagege @JoachimHagege

Hi Sam. I'm struggling with same issue right Did you identify best practices since posting Thanks !

- 10:32 AM Nov 11, 2018
- See Joachim Hagege's other Tweets

Hal Daumé III @haldaume3

useful...

♡ 12 3:47 PM - May 7, 2017

See Hal Daumé III's other Tweets

Jeremy Howard @jeremyphoward

Does anyone have any detailed tips, walkthrus, or tutorials on how to profile @PyTorch code running on the GPU?

I'm trying to optimize efficientnet and want to see exactly where the time is spent.

○ 312 10:29 AM - Oct 25, 2019

\bigcirc 62 people are talking about this

dvice for debugging slow backw

created

🚳 Apr '17

mrdrozdov Andrew Drozdov

I am working with a recursive neural network where the forward pass takes roughly 2s on average, and the backward pass closer to 7 or 8s. Does this sound like normal behavior? I wonder what I could be doing which is causing such a slowdown.

like

I have a lot of narrow/chunk/cat in the model. Could this be a factor?

replies

1.3k

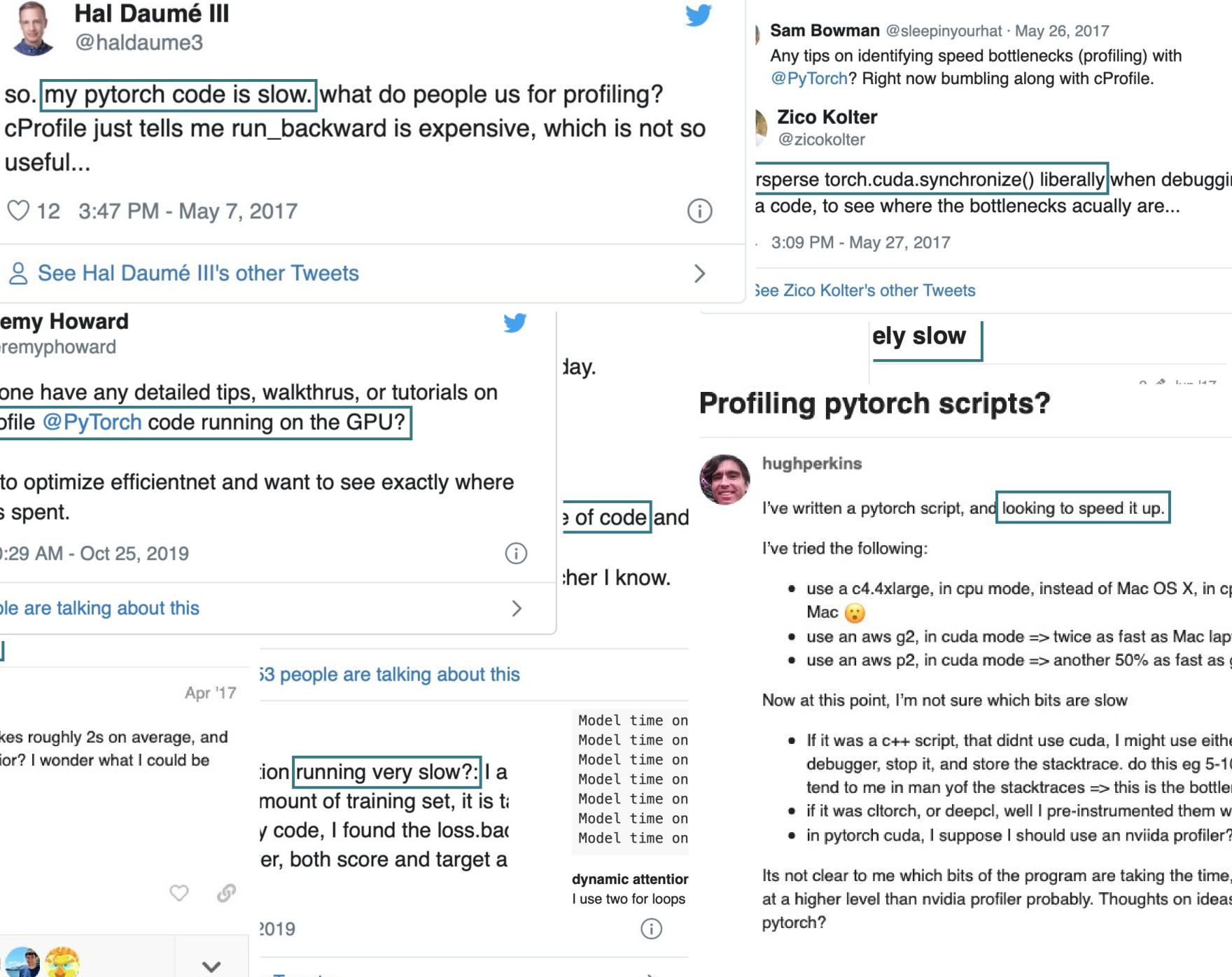
views users

Apr '17

 \bigcirc

0

V



r Tweets

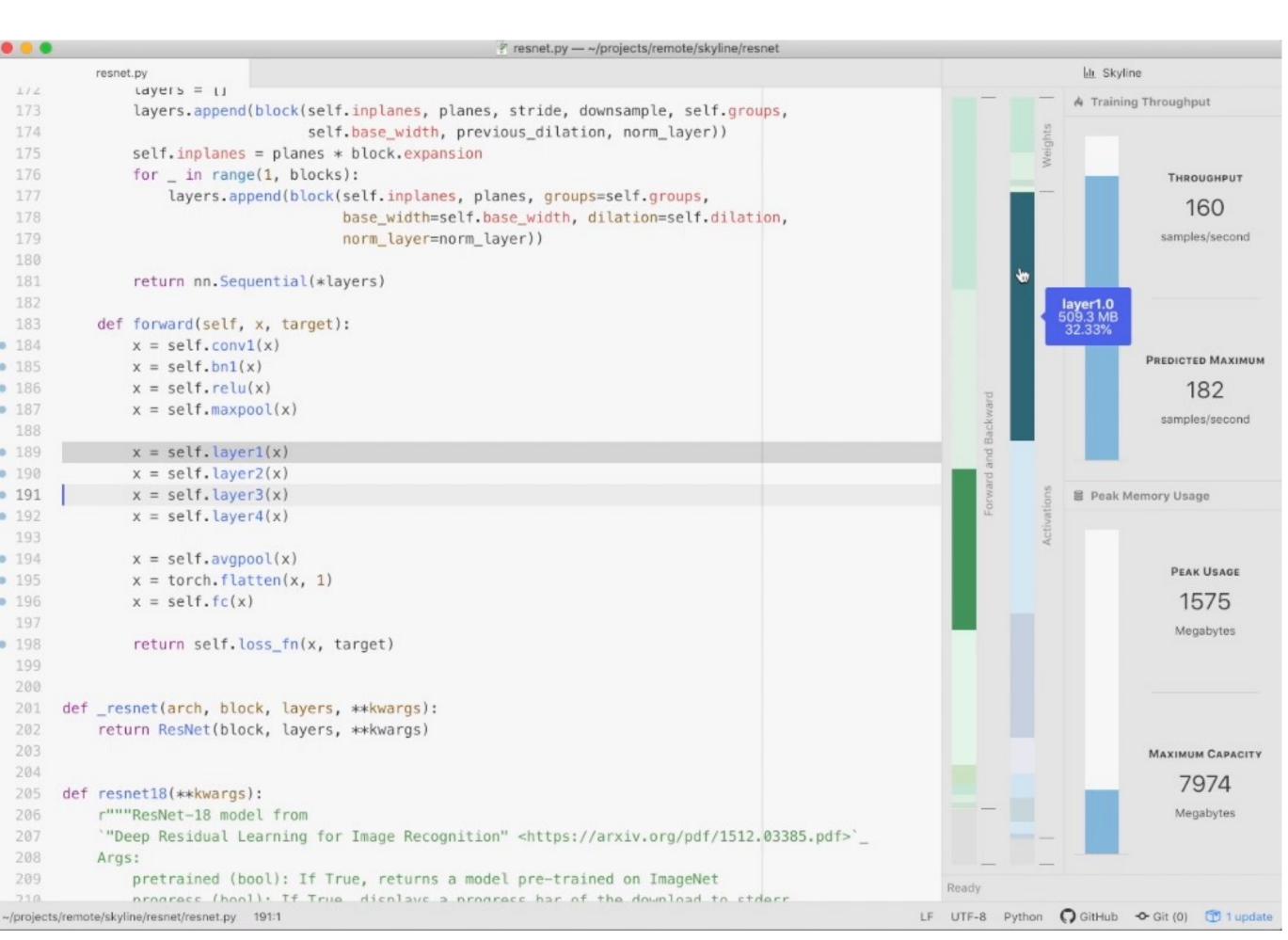
>

Interactive In-editor Performance Visualizations **Maskyline** and Debugging for DNN Training

- Key performance 112 173 metrics (throughput, 174 175 176 177 memory usage) 178 179 180 Iteration run time and 181 182 183 • 184 memory footprint • 185 • 186 • 187 breakdowns 188 • 189 • 190 • 191 Interactive visualizations • 192 193 • 194 • 195 linked to batch size • 196 197 • 198 predictions 199 200 201 202 203 204
 - 207 208 209

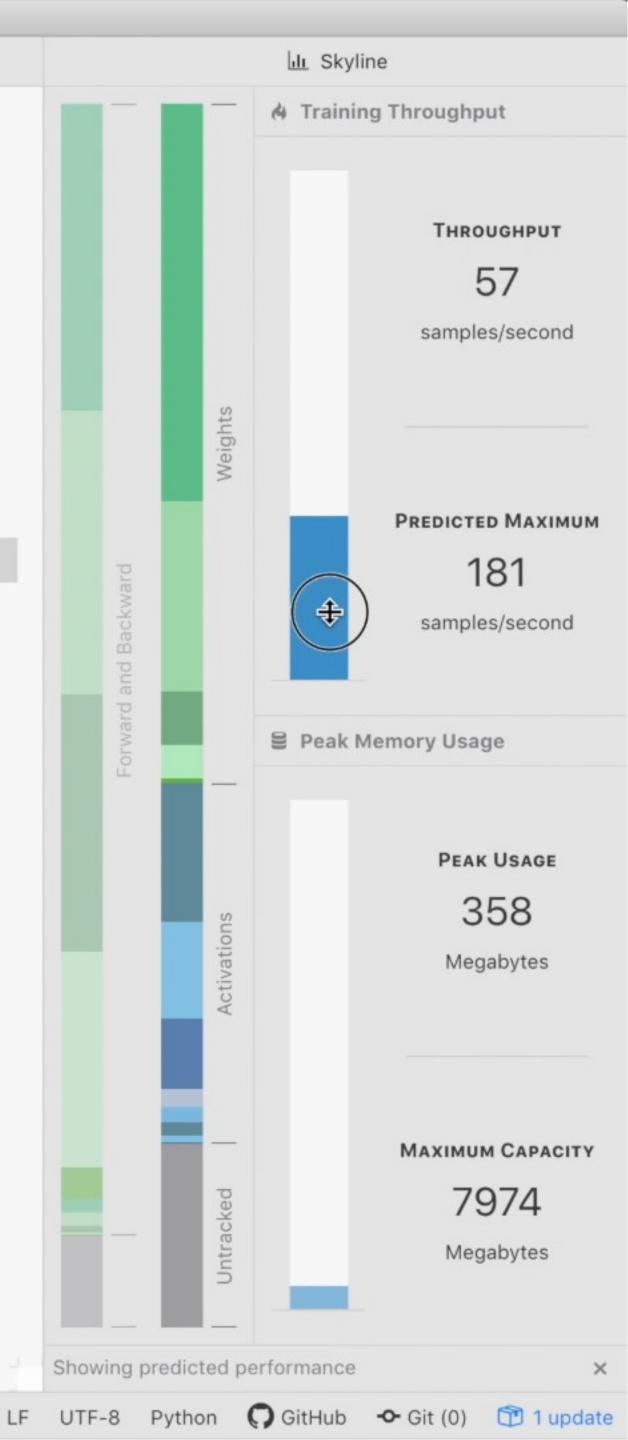
206

710




```
. . .
                              entry_point.py
       resnet.py
    import torch
     import torch.nn as nn
    import resnet
    def skyline_model_provider():
         return resnet.resnet50().cuda()
    def skyline_input_provider(batch_size=1):
11
         return (
12
            torch.randn((batch_size, 3, 224, 224)).cuda(),
13
            torch.randint(low=0, high=1000, size=(batch_size,)).
14
15
16
17
    def skyline_iteration_provider(model):
18
        optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
19
         def iteration(*inputs):
20
21
                 def skyline_input_provider(batch_size=1):
         11
22
23
             Out Dackwarut
            optimizer.step()
24
         return iteration
25
26
```

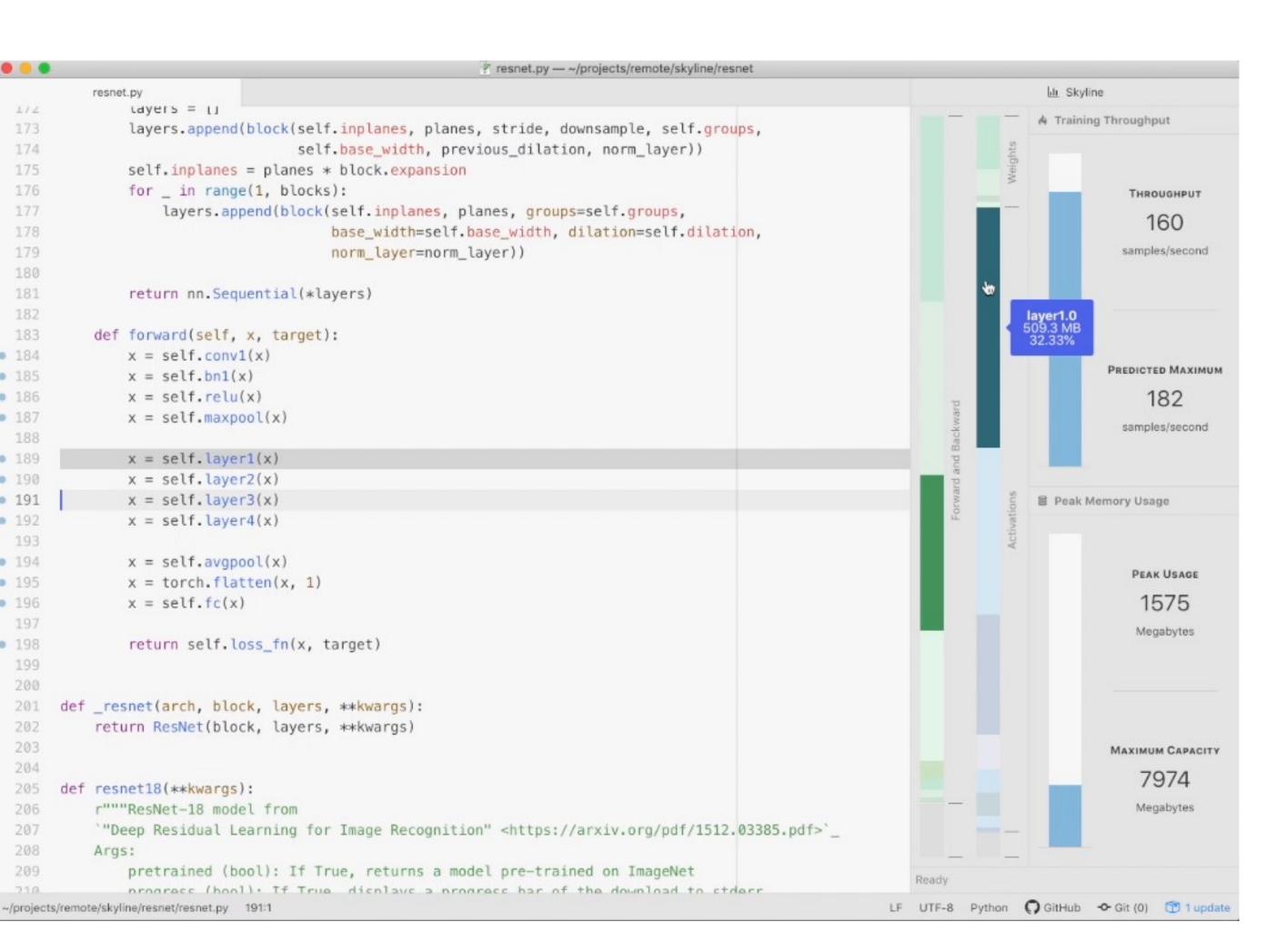
Interactive visualizations tied to the code!



Interactive In-editor Performance Visualizations and Debugging for DNN Training

Learn how to use Skyline to: 112 173 174 175 176 Identify run time and 177 178 179 memory bottlenecks 180 181 182 183 • 184 Tune batch sizes during • 185 • 186 • 187 development 188 • 189 • 190 • 191 *Proactively* design models • 192 193 • 194 with performance in mind • 195 • 196 197 • 198 199 200 201 202 203 204 206 207 Skyline works with PyTorch models in Atom 208 209 710

```
pip install skyline-cli && \
   apm install skyline
```

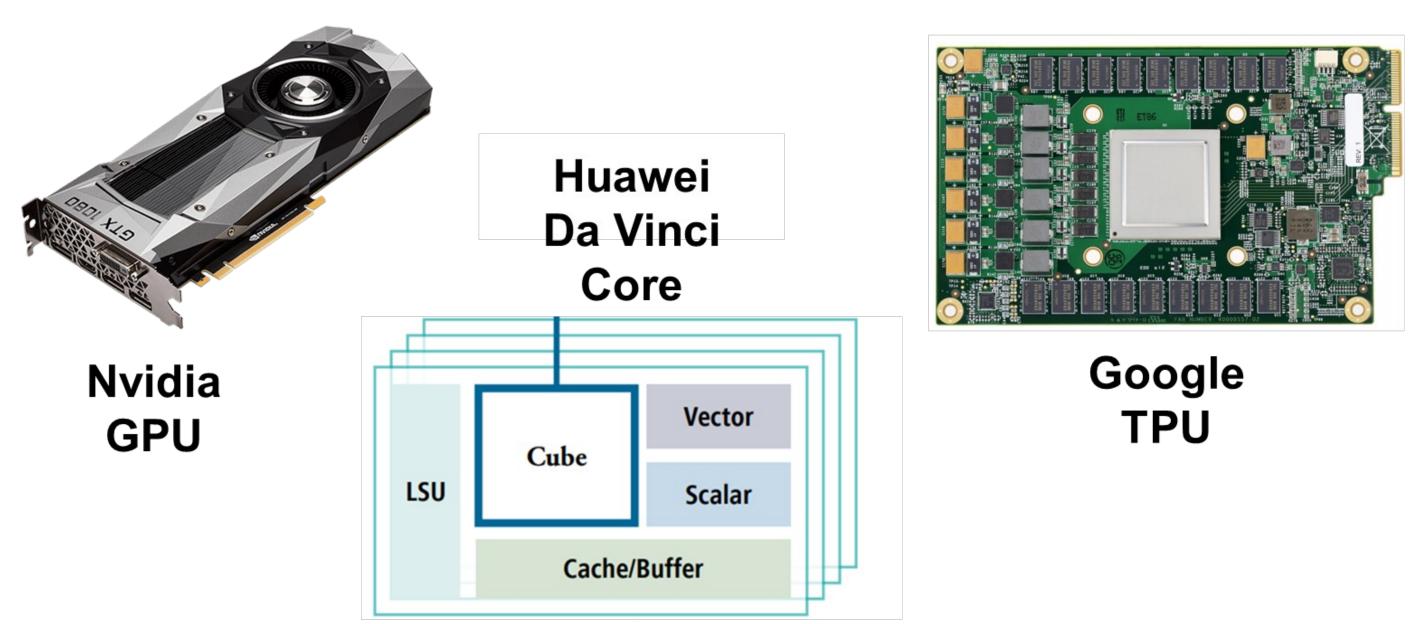



DNN Training and Inference : Challenges

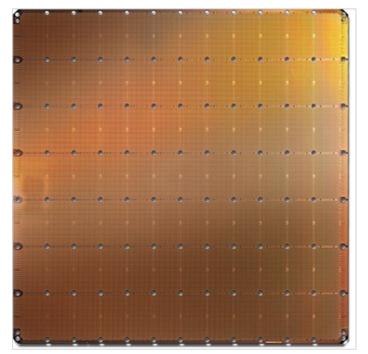
3. Methodology

Challenges for Metrics & Profiling

Specialized hardware for DNN training is a hot research area



Cerebras Wafer-Scale Engine



Habana Gaudi

Accelerators are specially optimized for DNN training

Challenges for Metrics & Profiling (2)

Measuring statistical efficiency require end-to-end training

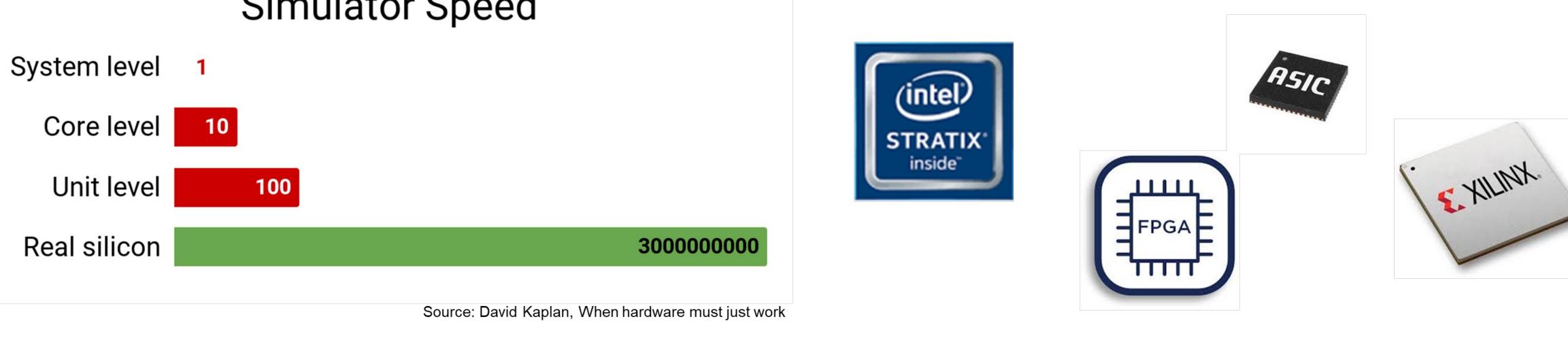
MLPerf Benchmark	Training time on Nvidia P100 (Hours)
ResNet-50	147.2
Mask R-CNN	83.32
Transformer	31.16
MiniGo	73.14

Benchmarking could take many hours even on powerful hardware

Challenges for Metrics & Profiling (3)

Option #1: On simulator

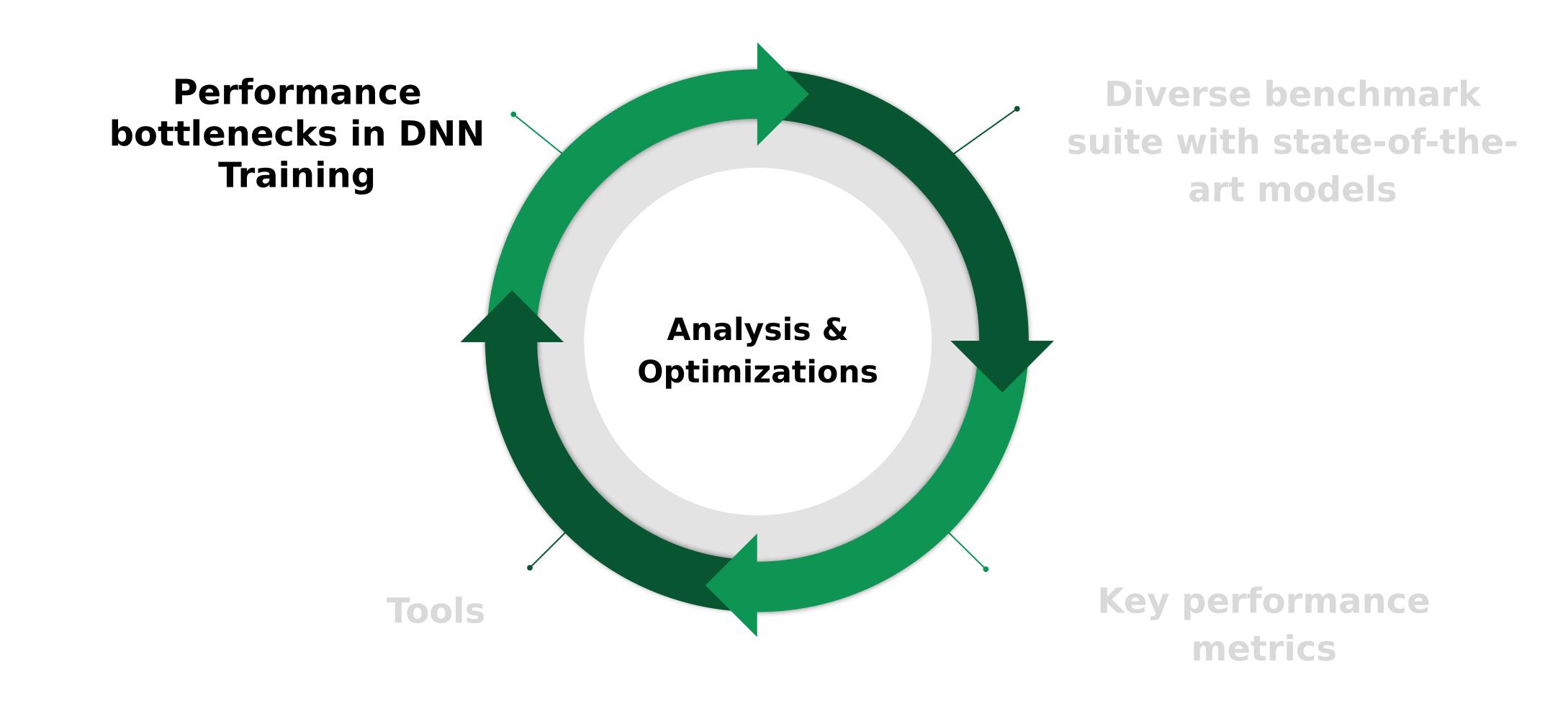
Simulator Speed



End-to-end training is prohibitively slow

Option #2: On FPGA/ASIC

Expensive and require considerable effort

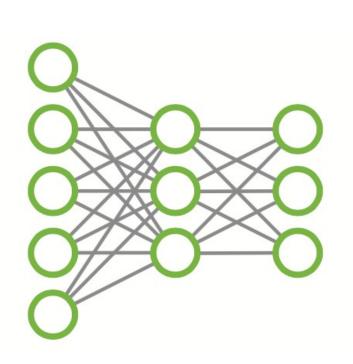


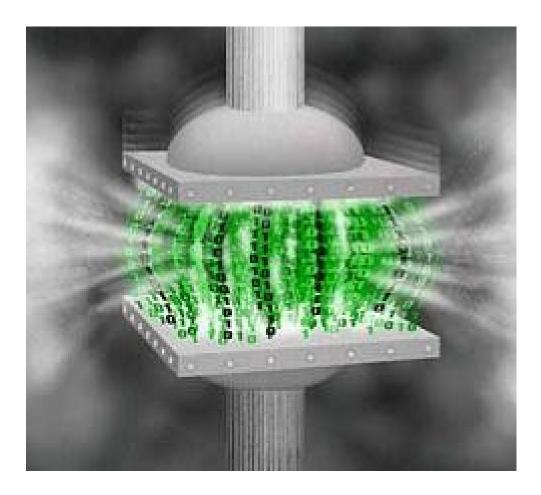
DNN Training and Inference : Trends and State-of-the-Art

DNN Training and Inference : Trends and State-of-the-Art

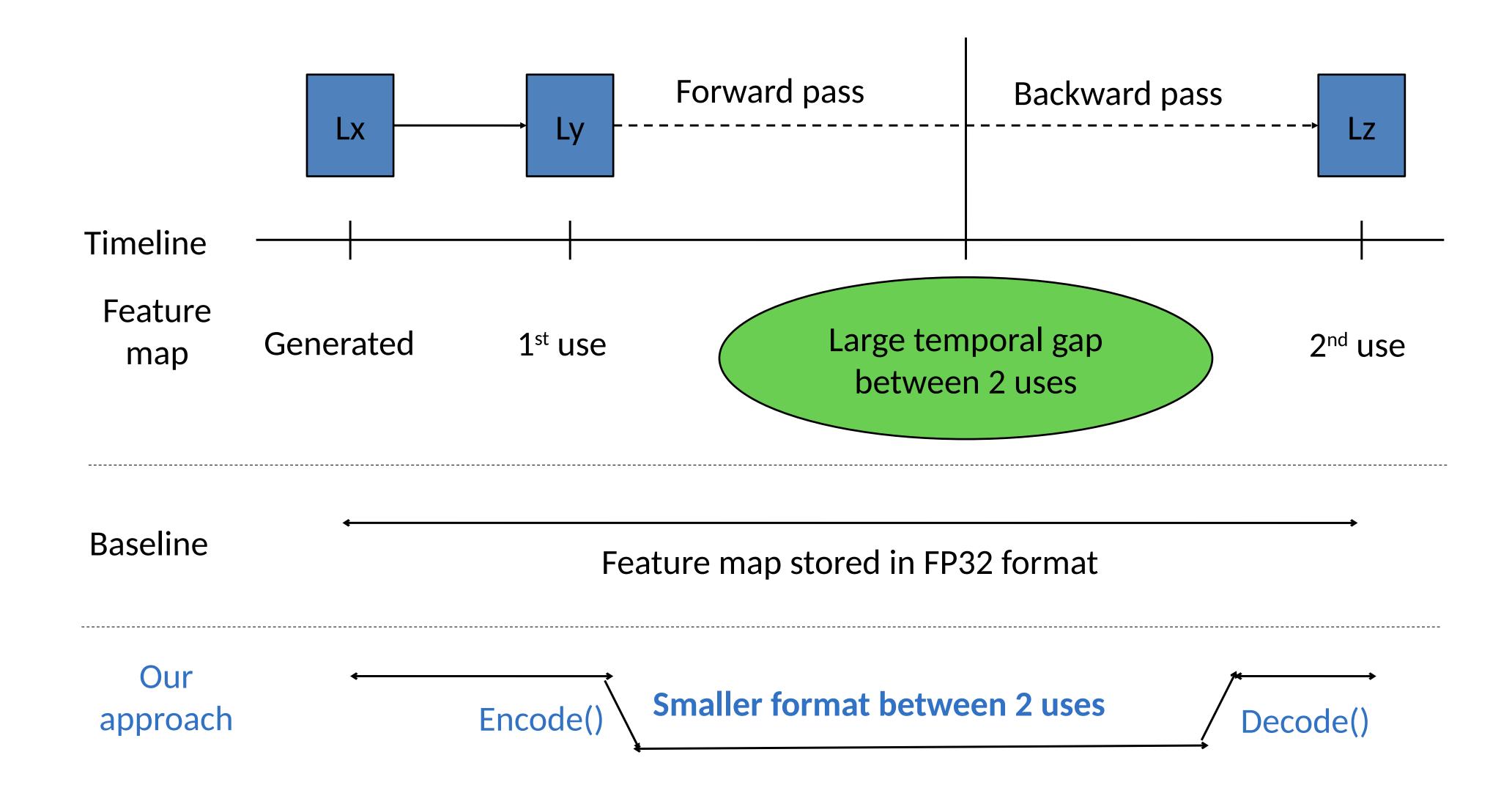
1. Memory is still an Issue

Gist: Efficient Data Encoding for Deep Neural Network Training





Our Insight



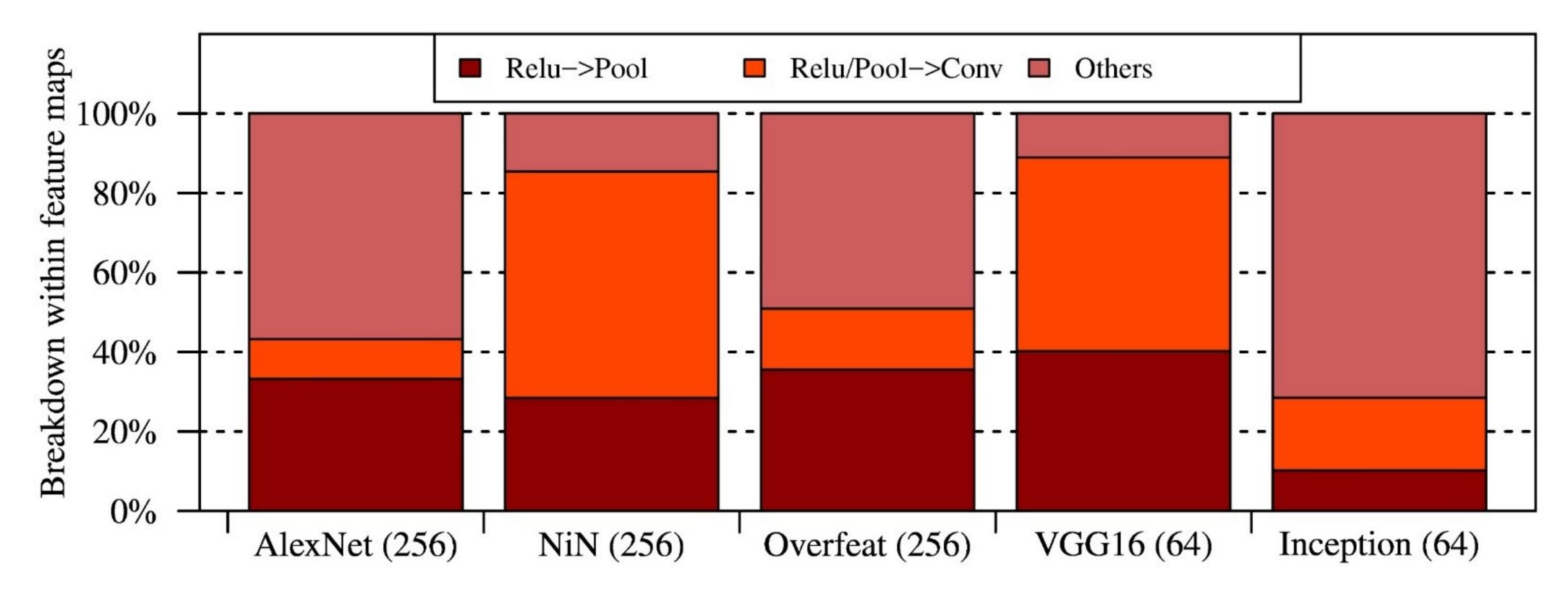
Layer-Specific Encodings

- Key Idea:
 - Use layer-specific compression
- Can be both fast and efficient

• Can be even lossless – Usually difficult for FP32

38

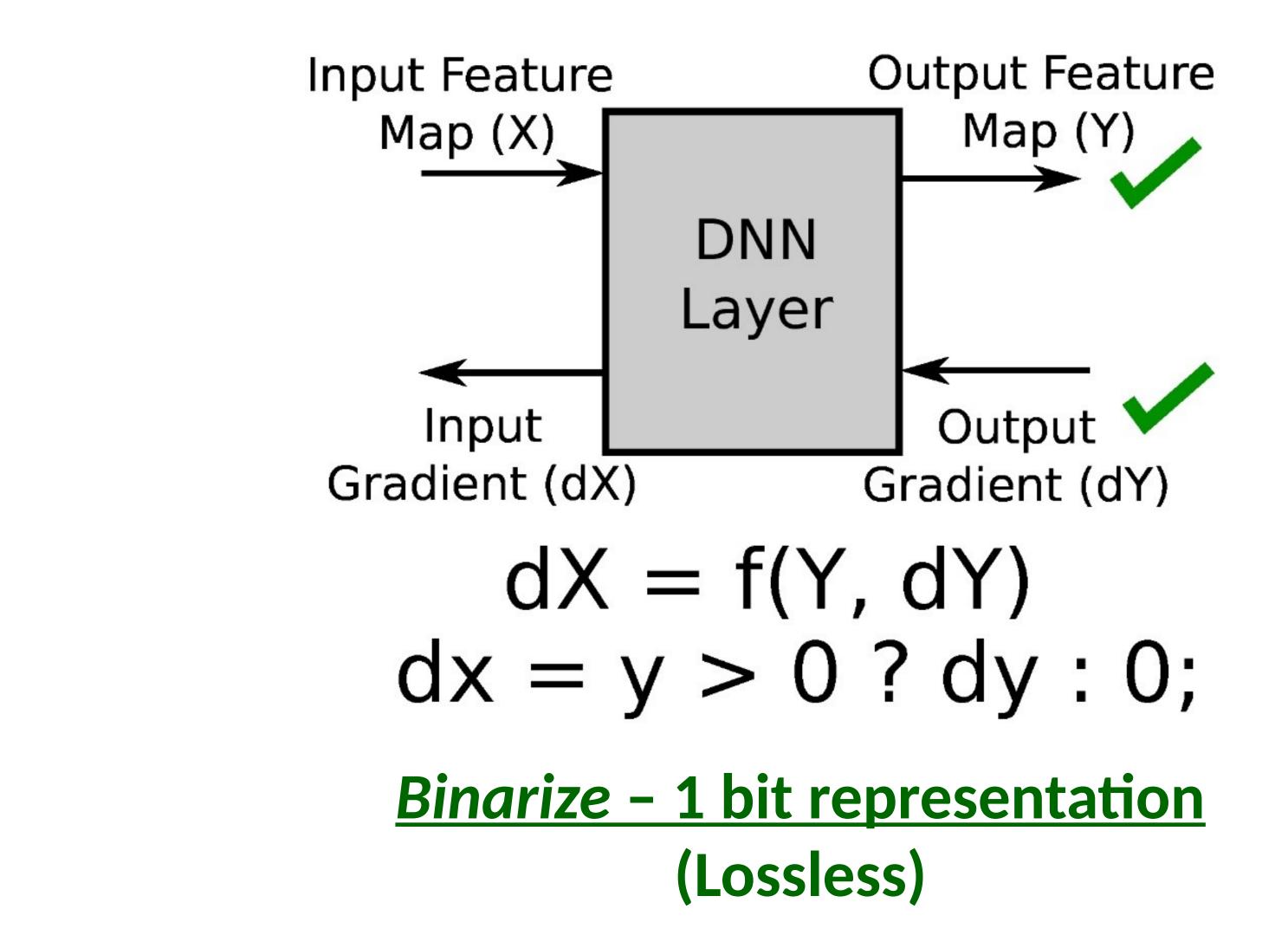
Relu Importance



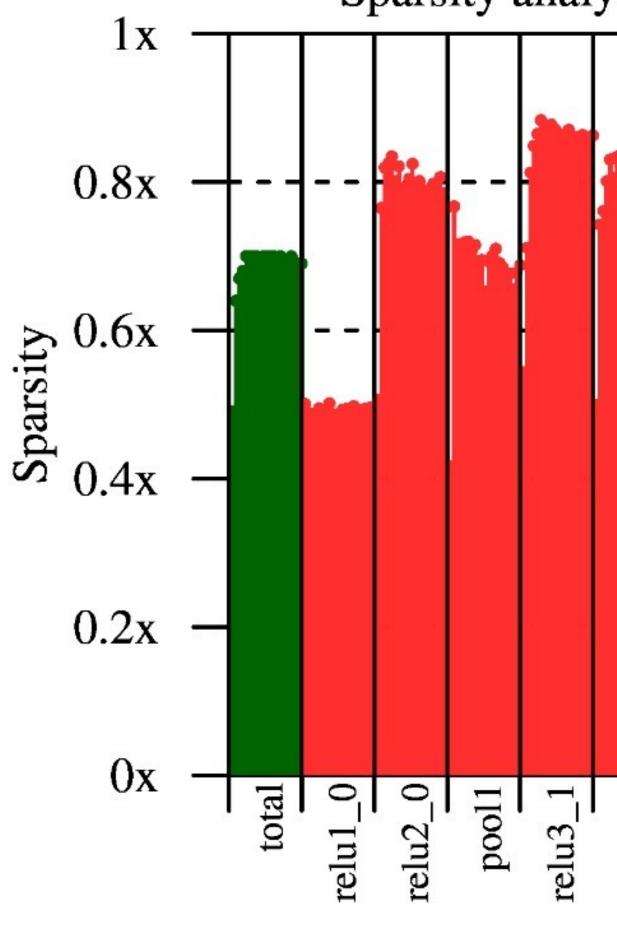
Significant footprint is due to Relu layer **CNTK Profiling**

Relu -> Pool

Relu Backward Propagation



Relu/Pool -> Conv Sparsity analysis on VGG16 (10 epochs)

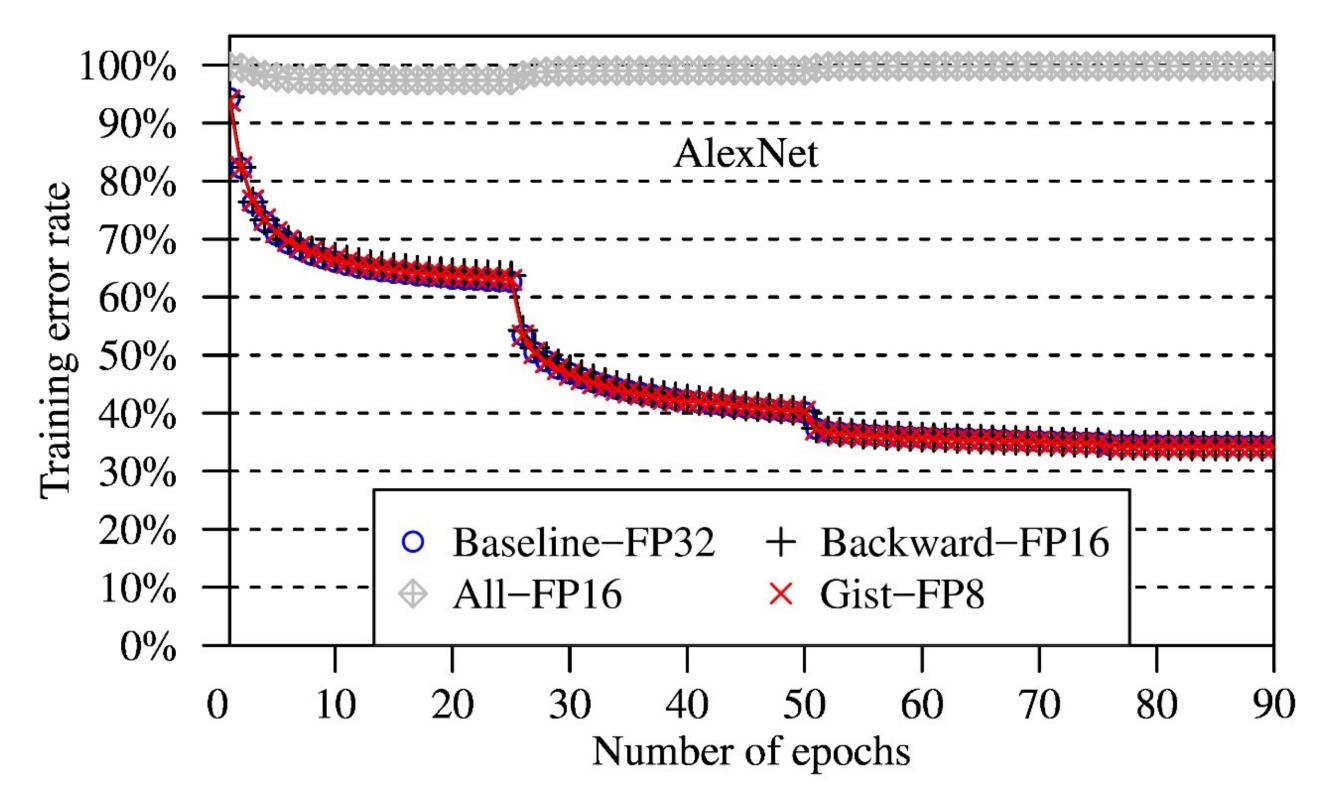


pool4 pool5 relu5_0 pool2 pool3 0 0 -relu3_ relu4_ relu5_ relu4 **Sparse Storage Dense Compute** (Lossless)

Opportunity for Lossy Encoding

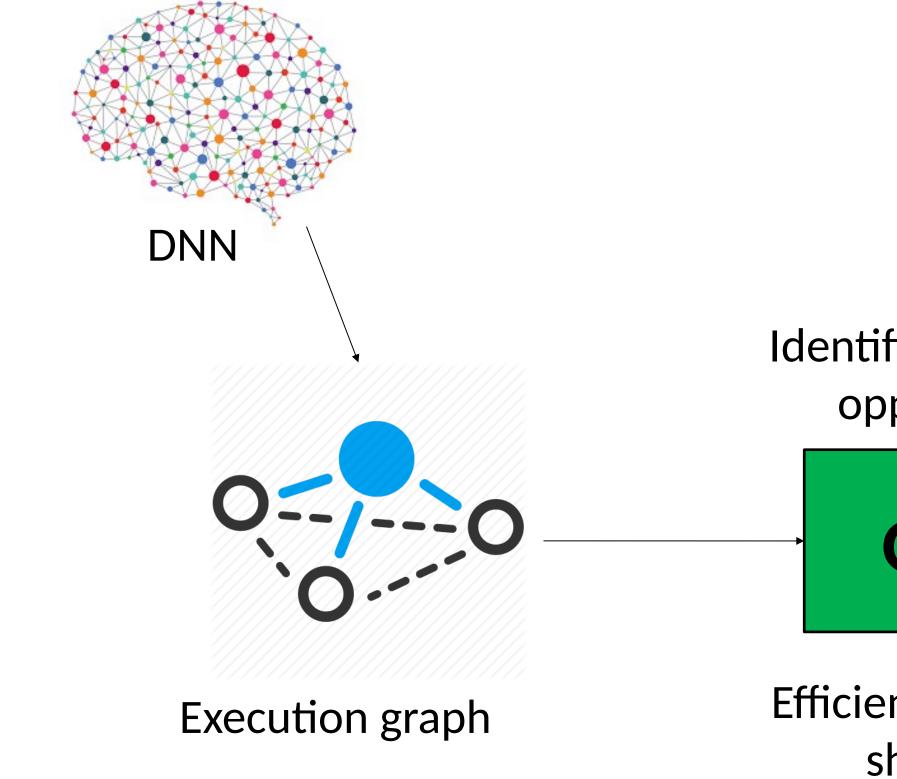
Precision reduction in forward pass quickly degrades accuracy

Delayed Precision Reduction Training with Reduced Precision



```
Delayed Precision Reduction
         (Lossy)
```


Proposed System Architecture - Gist



Identifies encoding opportunity

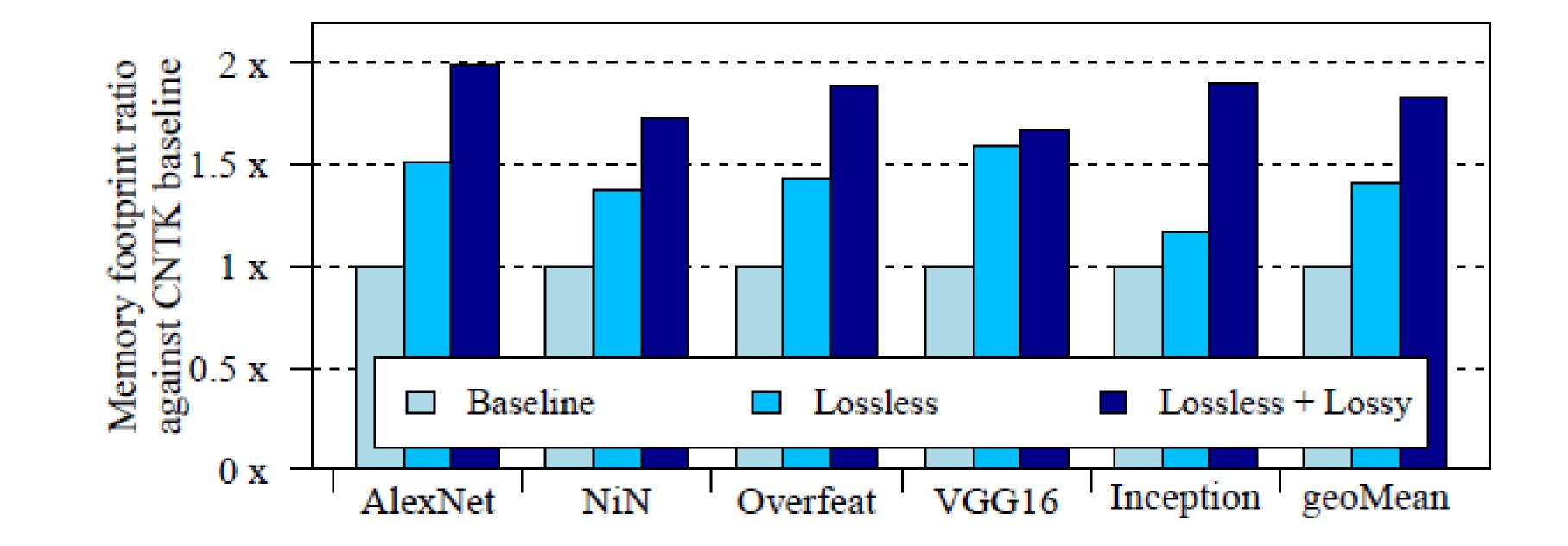
Modified execution graph

Gist

Efficient memory sharing

Memory allocation for new data structures

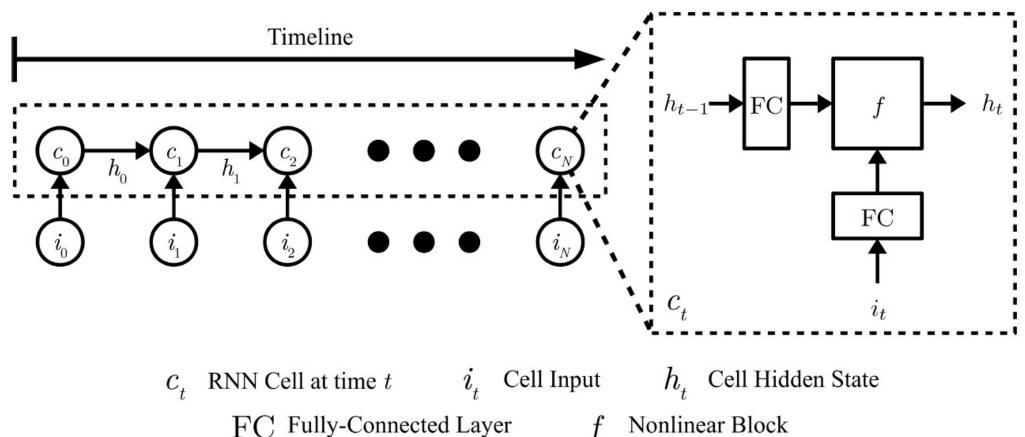
Compression Ratio



Up to 2X compression ratio With minimal performance overhead

Gist Summary

- Systematic memory breakdown analysis for image classification • Layer-specific lossless encodings - Binarization and sparse storage/dense compute
- Aggressive lossy encodings With delayed precision reduction
- Footprint reduction measured on real systems:
 - Up to 2X reduction with only 4% performance overhead
 - Further optimizations more than 4X reduction

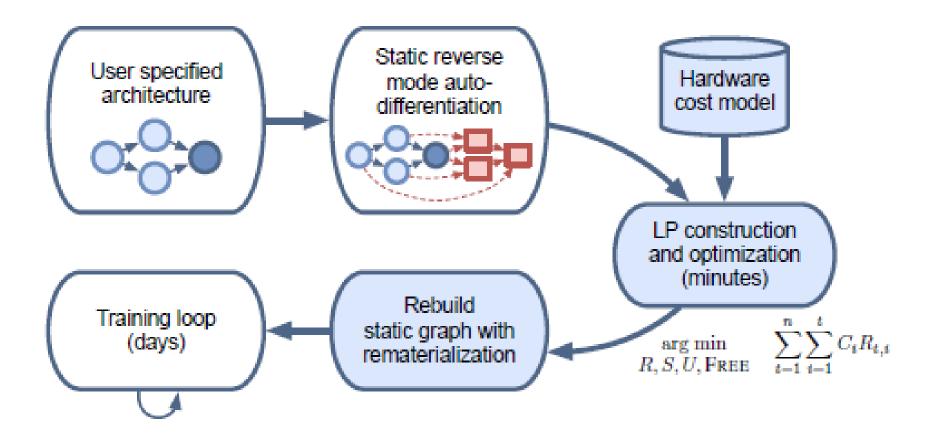


FC Fully-Connected Layer

Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training

Bojian Zheng et al.

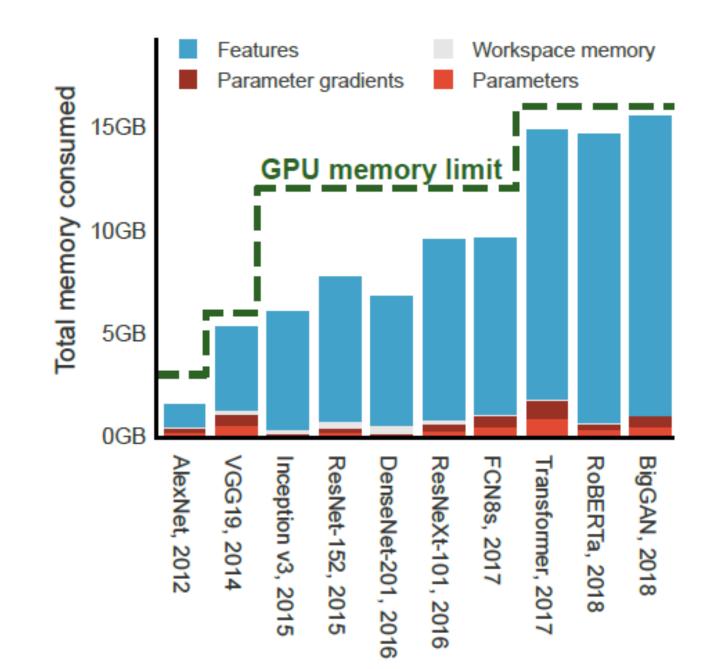
ISCA 2020



CHECKMATE: BREAKING THE MEMORY WALL WITH OPTIMAL TENSOR REMATERIALIZATION

MLSys 2020

Paras Jain et al. (UC Berkeley)



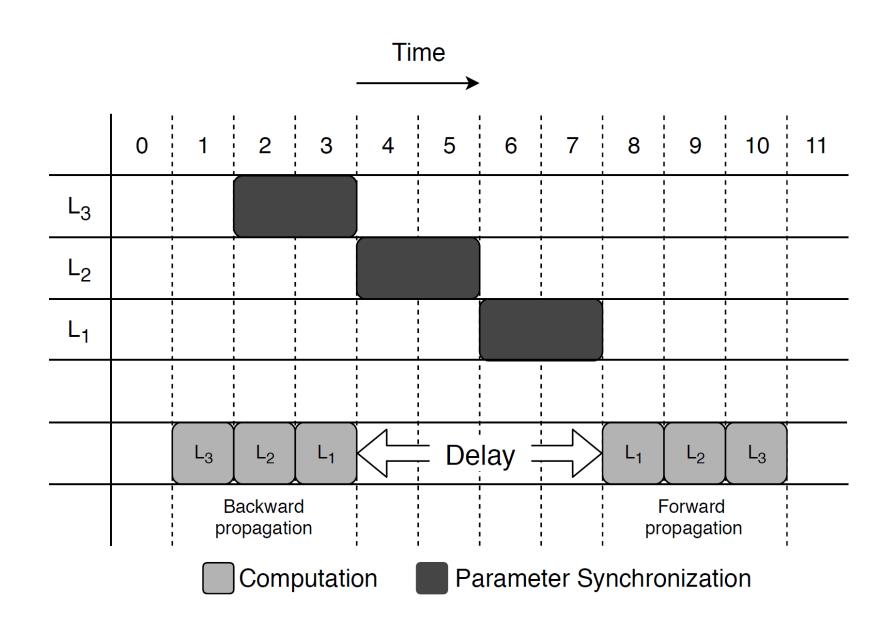
There are many more

NeurIPS 2019

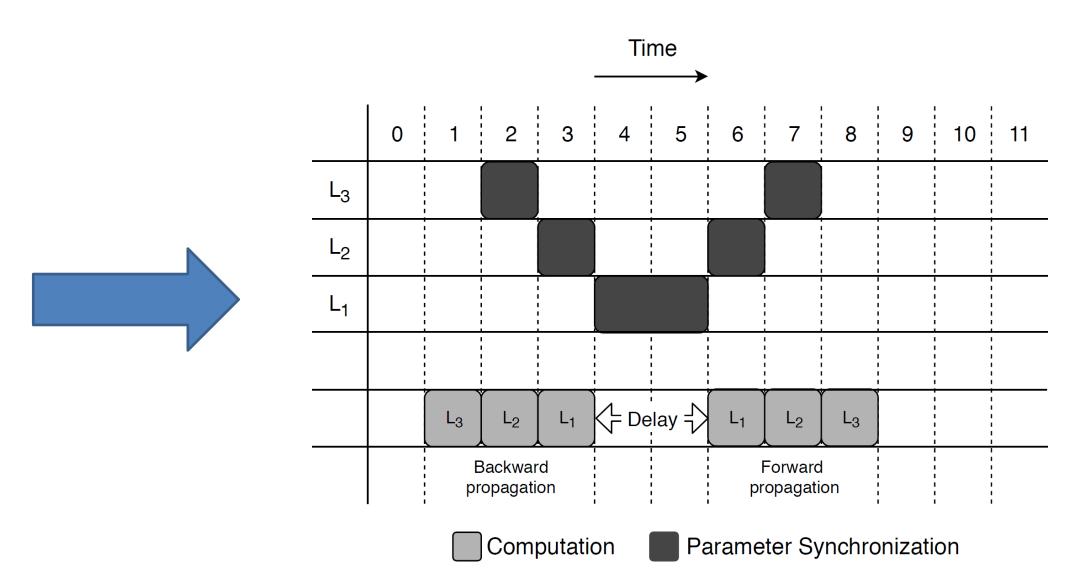
- Another paper at ISCA 2020 (jpeg encoding for CNNs)
- Tempo, NeurIPS 2022

DNN Training and Inference : Trends and State-of-the-Art

2. Distributed Training: Algorithms and Networking



Priority-based Parameter Propagation (P3) for Distributed DNN Training Anand Jayarajan et al.



P3 Followups

- TicTac (MLSys'19) from UIUC
- BytePS (SOSP'19) from ByteDance

PLink: Discovering and Exploiting Locality for Accelerated Distributed Training on the Public Cloud-based Distributed Systems

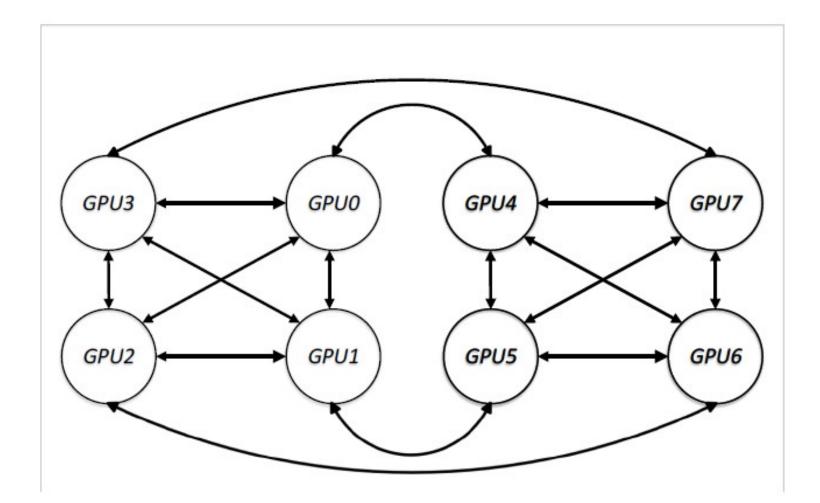
UW and Microsoft Research

Blink: Fast and Generic Collectives for Distributed ML

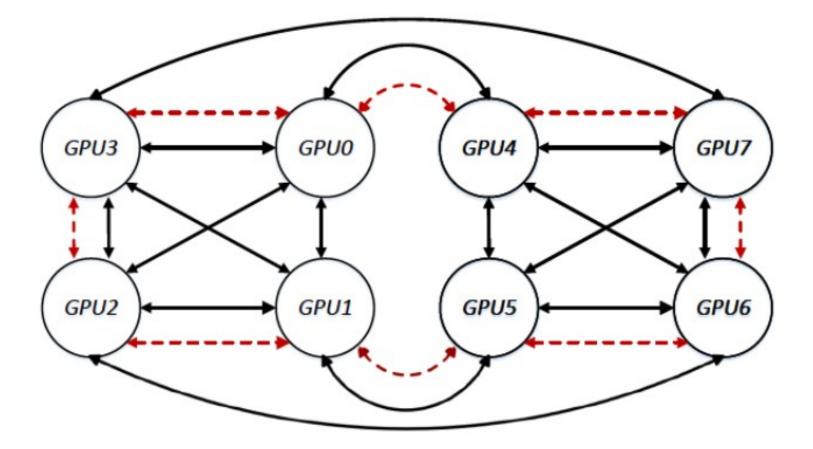
UC Berkeley, U of Wisconsin, and Microsoft Research

MLSys 2020

Challenge 1: Different server configurations



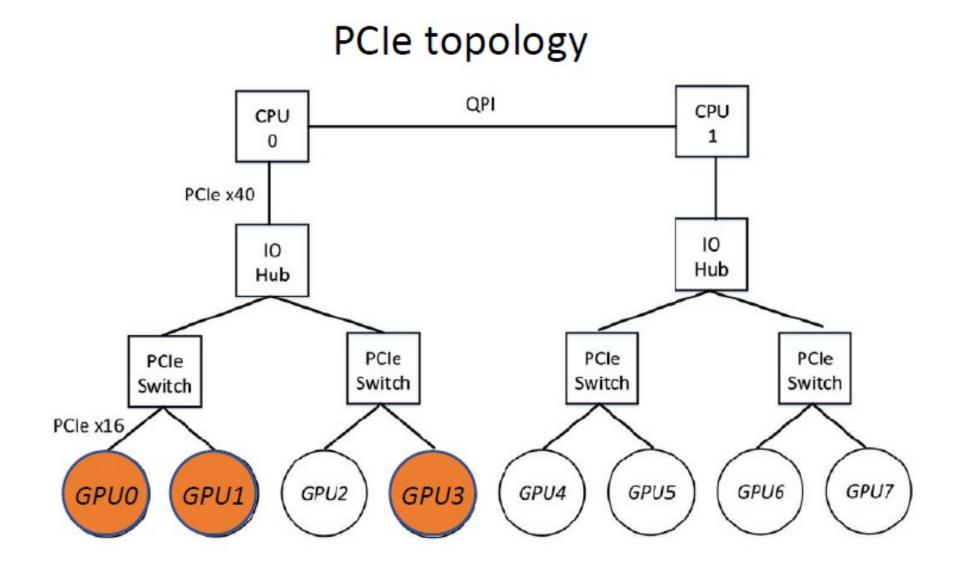
DGX1-P100 (NVLink 1st Gen, ~18GB/s)



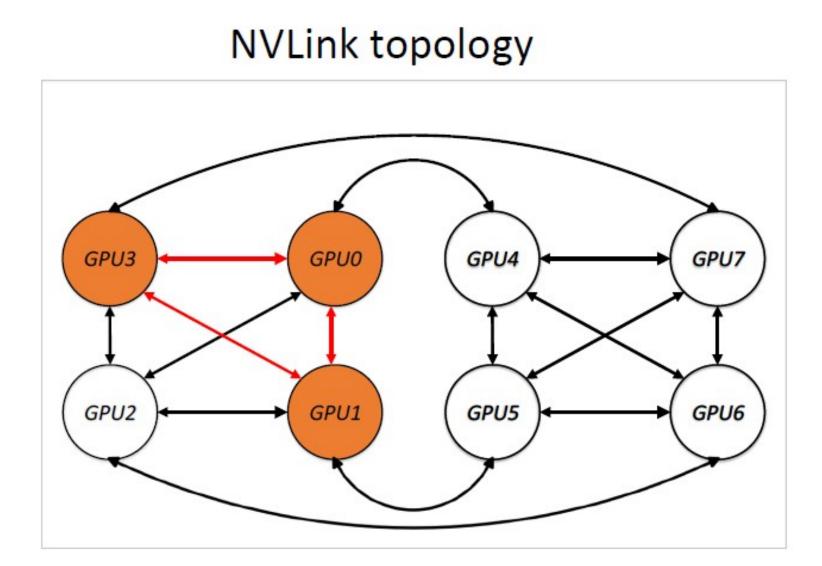
DGX1-V100 (NVLink 2nd Gen, ~23GB/s)

Protocols needs to be topology aware to effectively use hardware links.

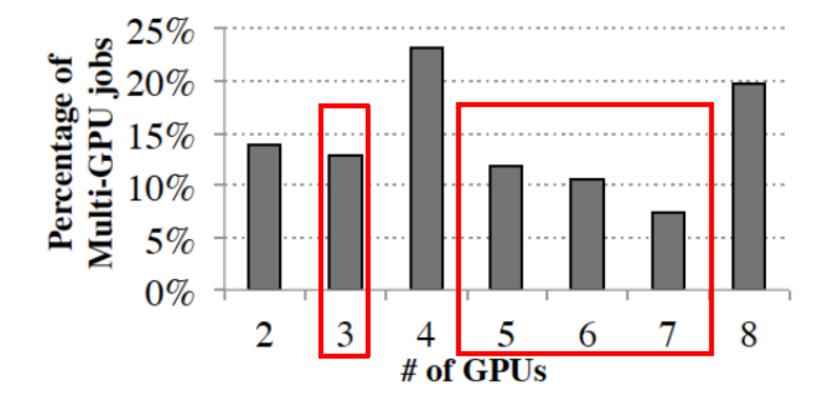
Challenge 2: Link heterogeneity



Ring-based collectives can only utilize homogeneous links.



Challenge 3: Fragmentation in multi-tenant clusters

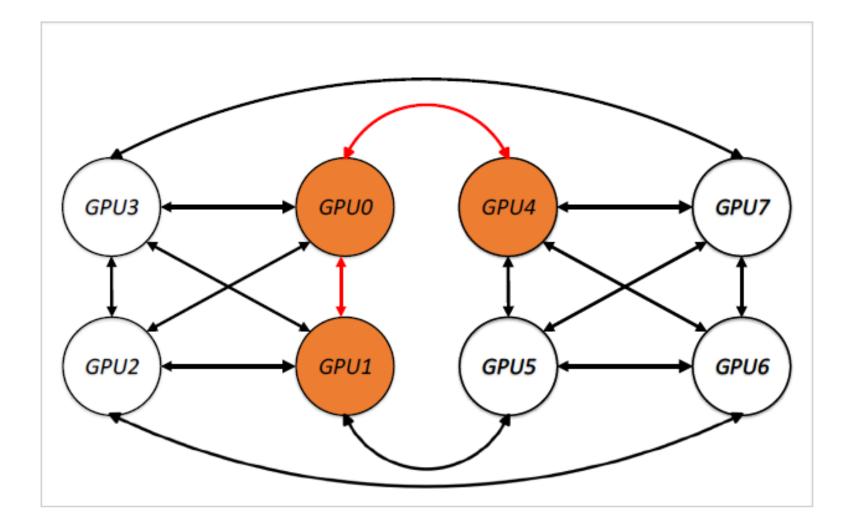


Within each 8-GPU server, # of GPUs allocated to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?

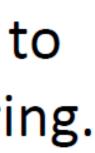
Many cluster schedulers are not topology-aware

Without support for efficient migration, DNN jobs must embrace fragmentation to avoid queuing delays.



Irregular topo. \rightarrow no ring

Existing solutions (NCCL) fall back to PCIe if they cannot form a NVLink ring.



57

How Blink handles topology heterogeneity

Topology Heterogeneity

Different server configurations

Link heterogeneity

Fragmentation in multi-tenant clusters (irregular topology)

Blink

Probe available links at job run time

Concurrent data transfer over heterogenous links

Spanning trees (v.s. Rings) are more flexible and optimal.

More

NCCL-compatible API, seamless integration with TF, PyTorch, etc.

43

Scaling Back-Propagation by Parallel Scan Algorithm

Shang Wang^{1,2}, Yifan Bai¹, Gennady Pekhimenko^{1,2}

Executive Summary

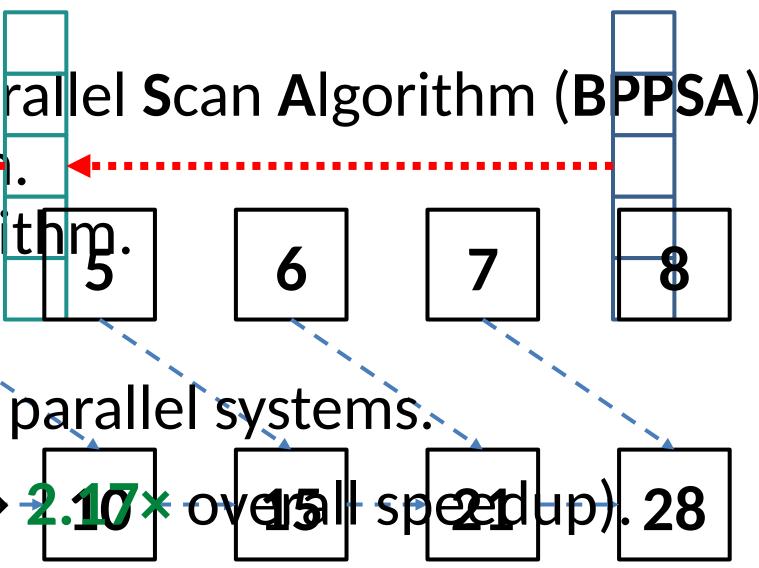
gradient computations.

<u>Key idea:</u> We propose scaling BP by Parallel Scan Algorithm (BPPSA):

- Reformulate BP into a scan operation.
- Scaled by a customized parallel algorithm.

<u>Key Results:</u> $\Theta(\log n)$ vs. $\Theta(n)$ steps on parallel systems. Up to 108 koadkward bask speedus ($\rightarrow 2.10$ kovers || speedup). 28

- The **back-propagation (BP)** algorithm is **popularly used** in training deep learning (DL) models and **implemented in many** DL frameworks (e.g., PyTorch and TensorFlow).
- **<u>Problem</u>:** BP imposes a strong sequential dependency along layers during the

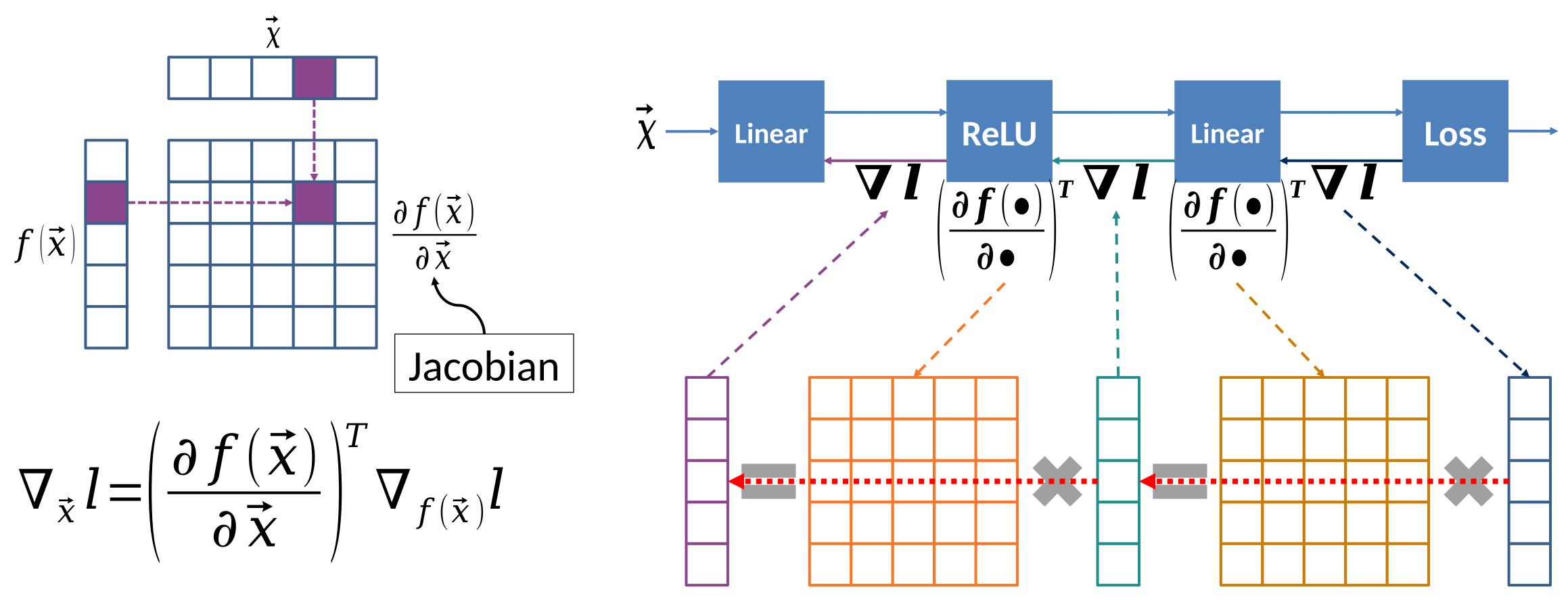


60

Back-propagation¹ (BP) Everywhere

¹Rumelhart et al. "Learning representations by back-propagating" errors.", Nature (1986)

BP's Strong Sequential Dependency



Strong Sequential Dependency along layers.

Data Parallel Training

Respects BP's strong sequential dependency.

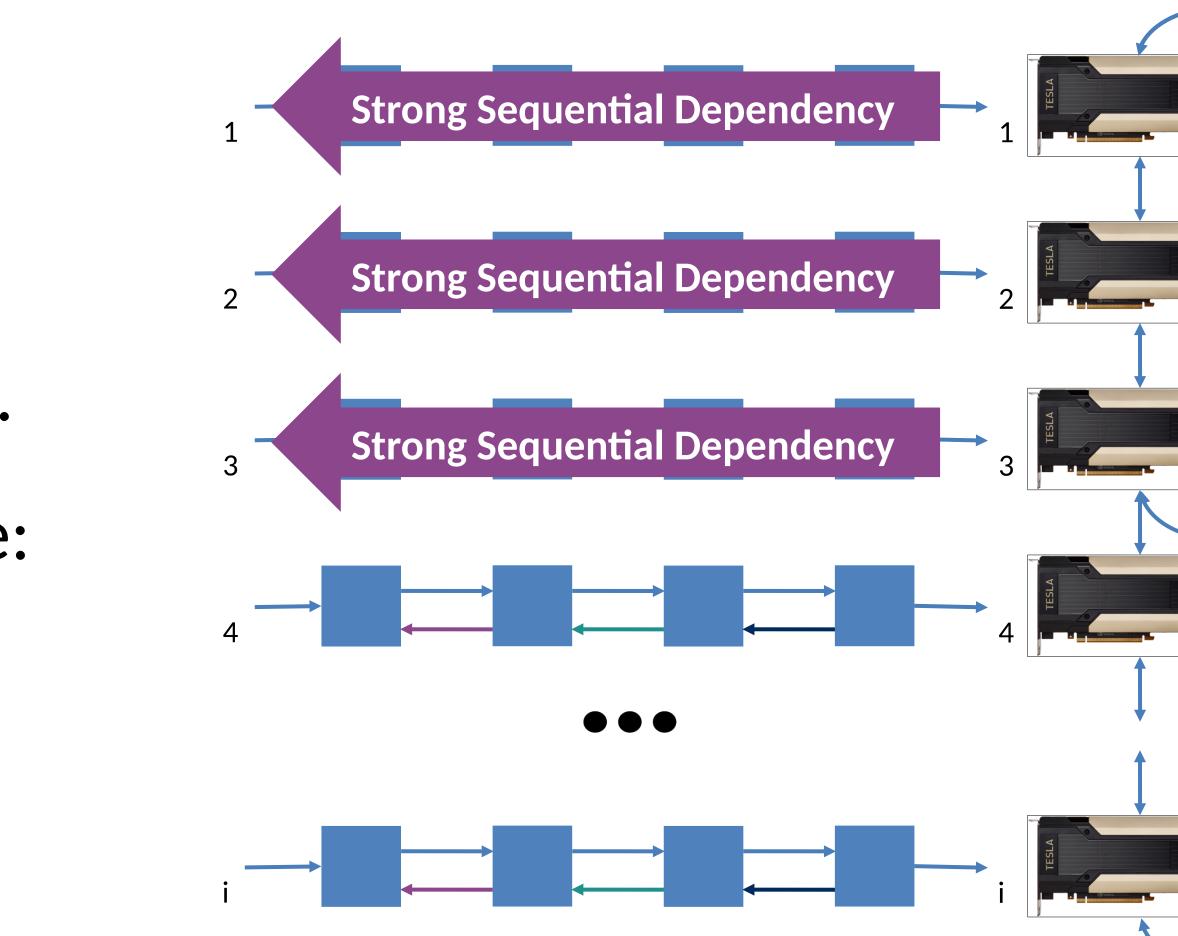
Conceptually simple, widely used.

Effectively increases the batch size:

- Generalization gap¹
- Batch size scaling limit²

<u>Constraint:</u> The model **must** fit in one device.

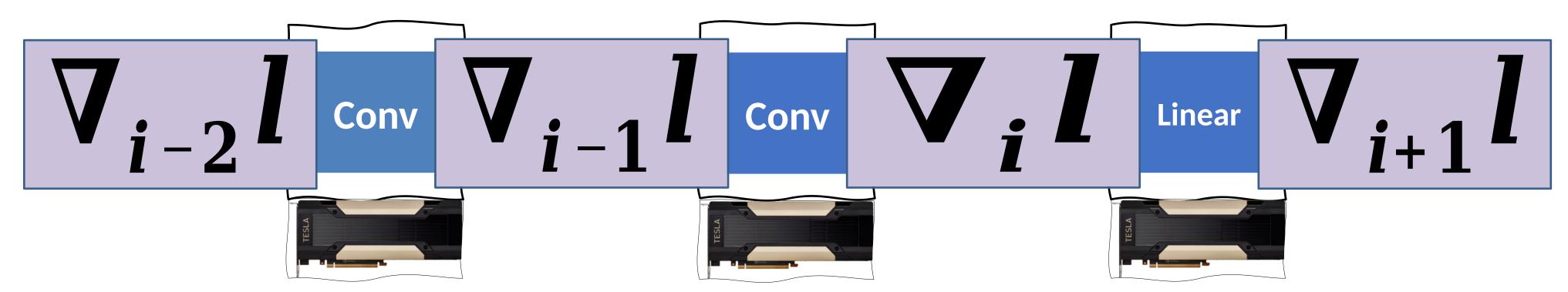
¹Keskar, Nitish Shirish et al. "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima." ICLR (2017) ²Shallue, Christopher J. et al. "Measuring the Effects of Data Parallelism on Neural Network Training." Journal of Machine Learning Research 20 (2019)



63

Model Parallel Training

- Used when the model cannot fit in one device.
- BP's strong sequential dependency limits scalability.
- Prior works on **pipeline parallel training**^{1,2} to mitigate such problem, but have their own limitations:
- Linear per-device space complexity.
- Trade-off between "bubble of idleness" vs. potential convergence affect.



¹Harlap, Aaron et al. "PipeDream: Fast and Efficient Pipeline Parallel DNN Training." SOSP (2019) ²Huang, Yanping et al. "GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism." NeurIPS (2019)

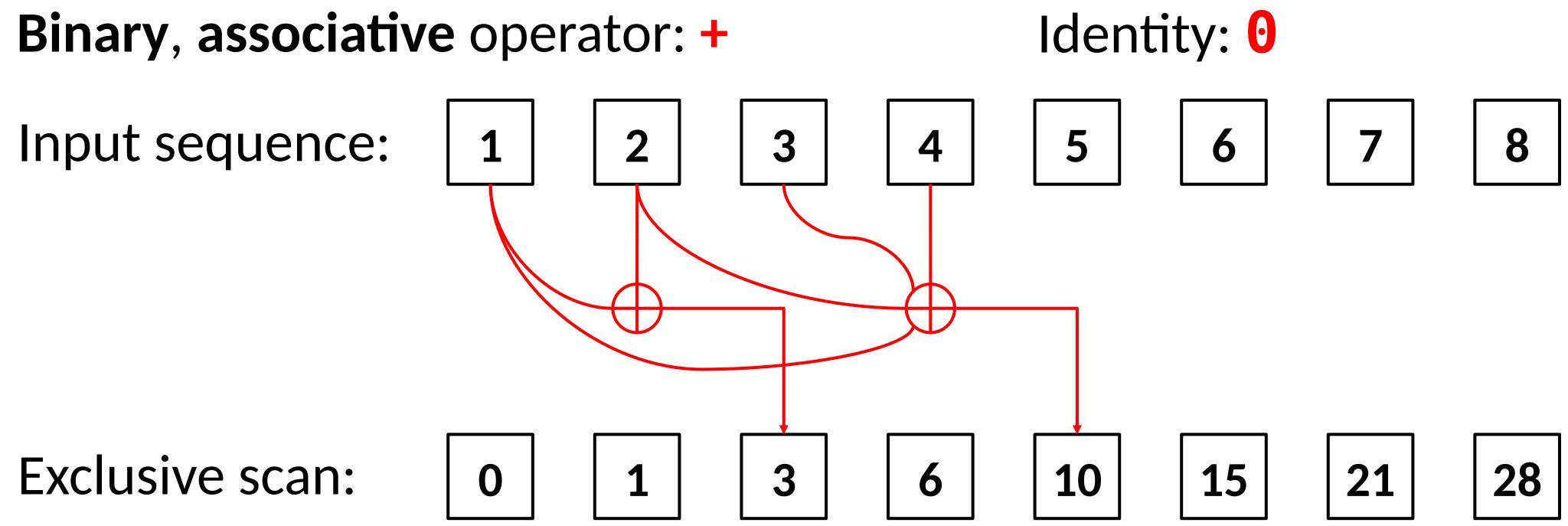
Rethinking BP from an Algorithm Perspective

 Problems with strong sequential dependency were (80'), but in a much simpler context.

- - Reformulate BP as a scan operation.
 - Scale BP by a **customized Blelloch Scan** algorithm.
 - Leverage **sparsity** in the Jacobians.

• We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):

What is a Scan¹ Operation?



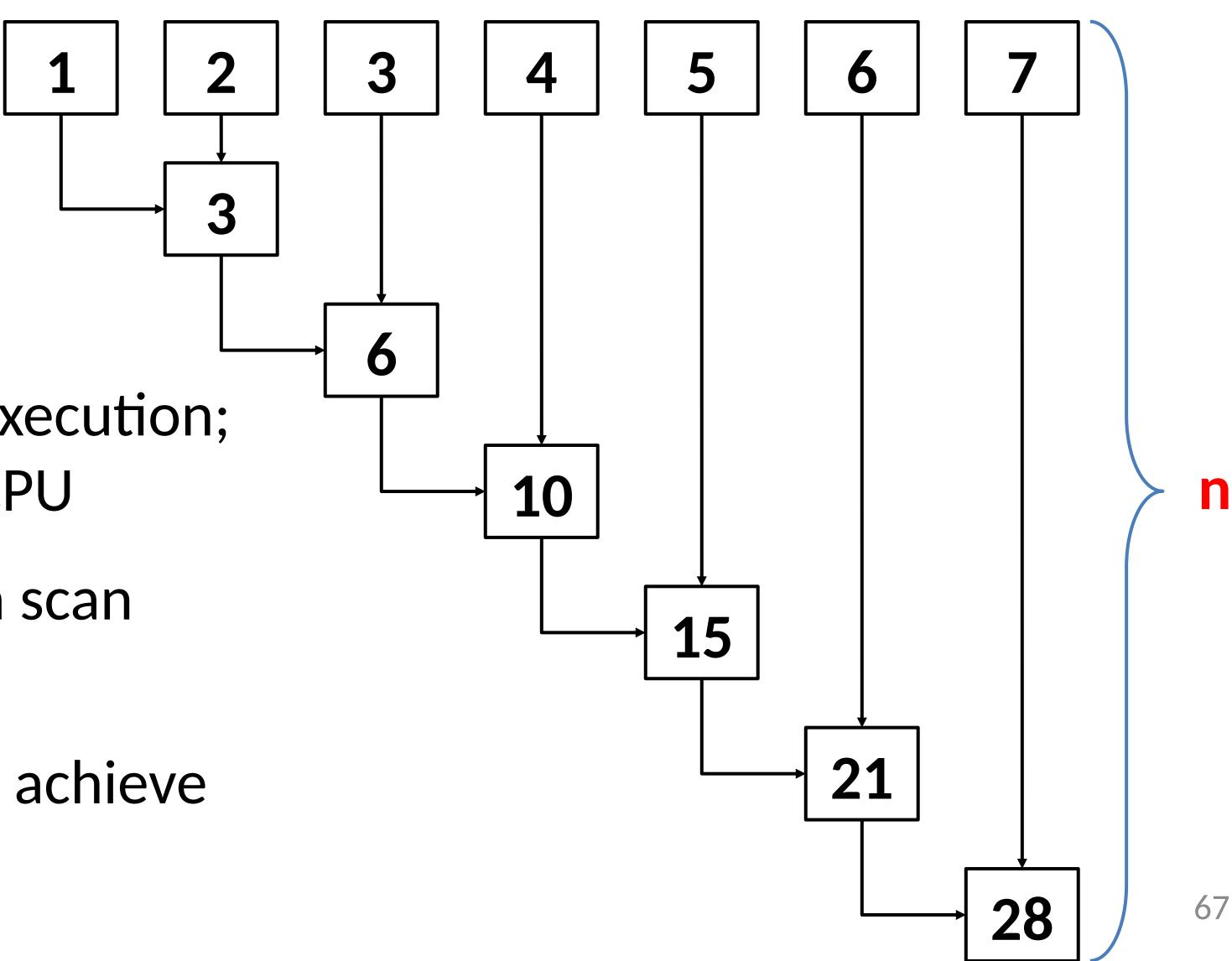
Compute partial reductions at each step of the sequence.

¹Blelloch, Guy E. "Prefix sums and their applications". Technical Report (1990)



Linear Scan

<u>Step:</u> executing the operator once.

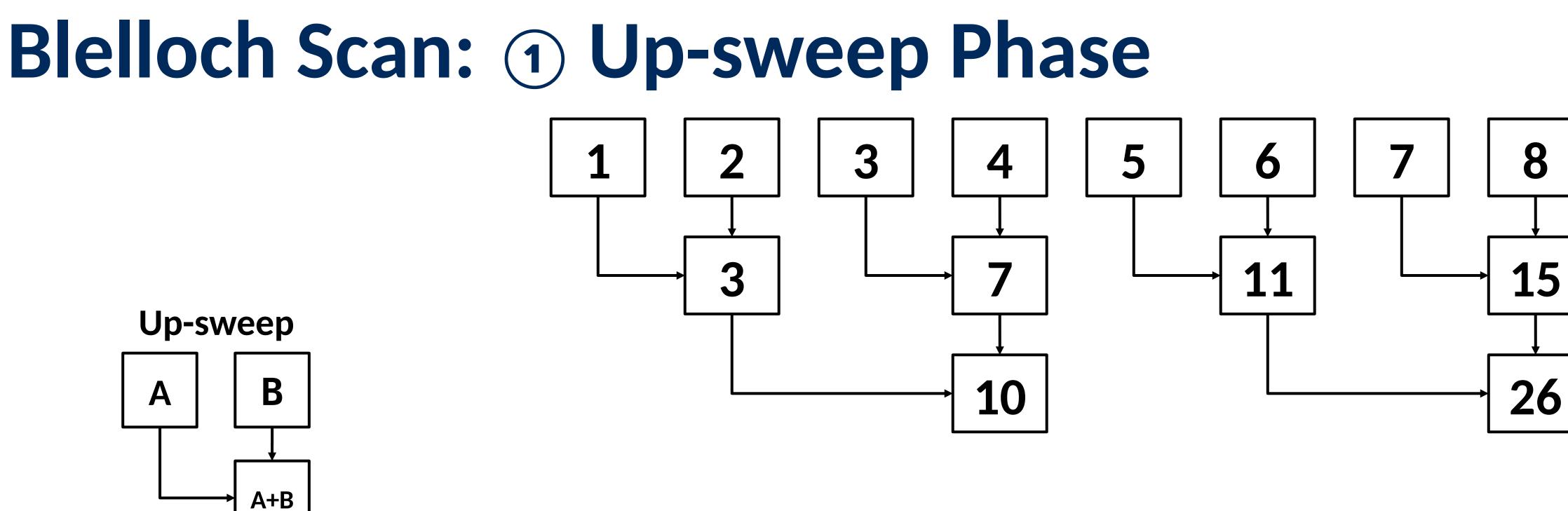


Number of Elements (n)

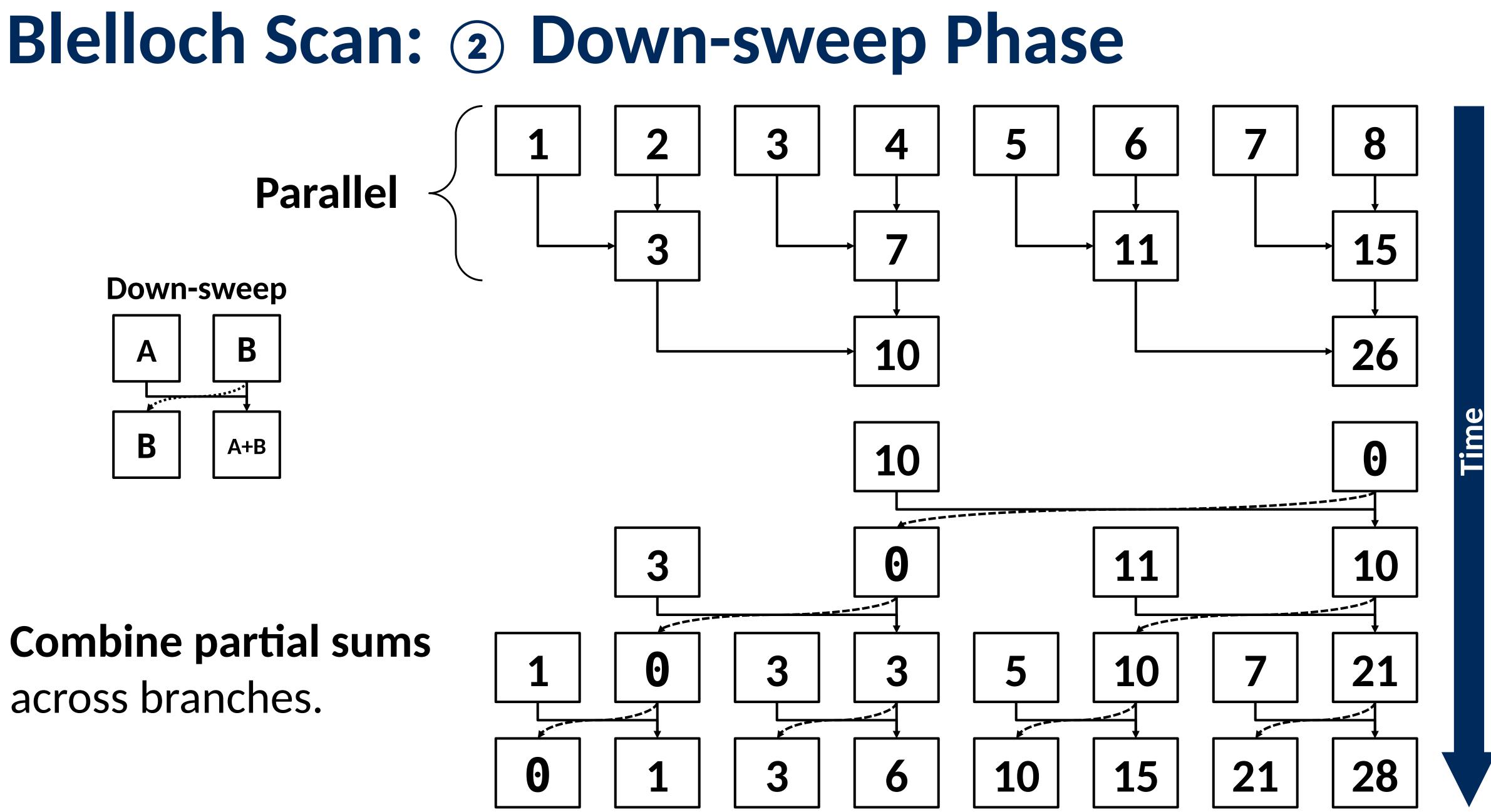
<u>Worker (p):</u> an instance of execution; e.g., a core in a multi-core CPU

<u>On a single worker:</u> perform scan linearly; takes n steps.

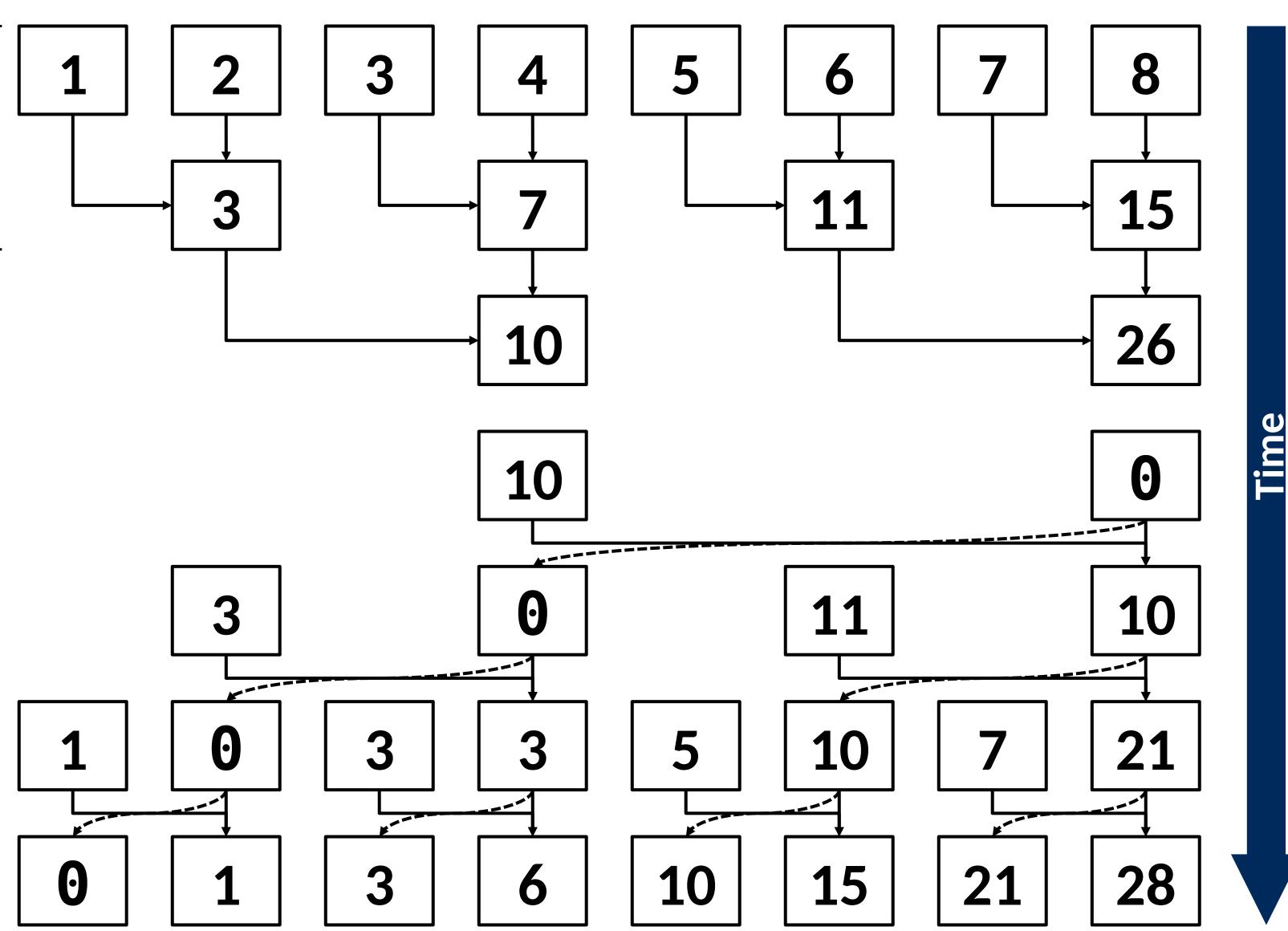
With more workers: Can we achieve sublinear steps?



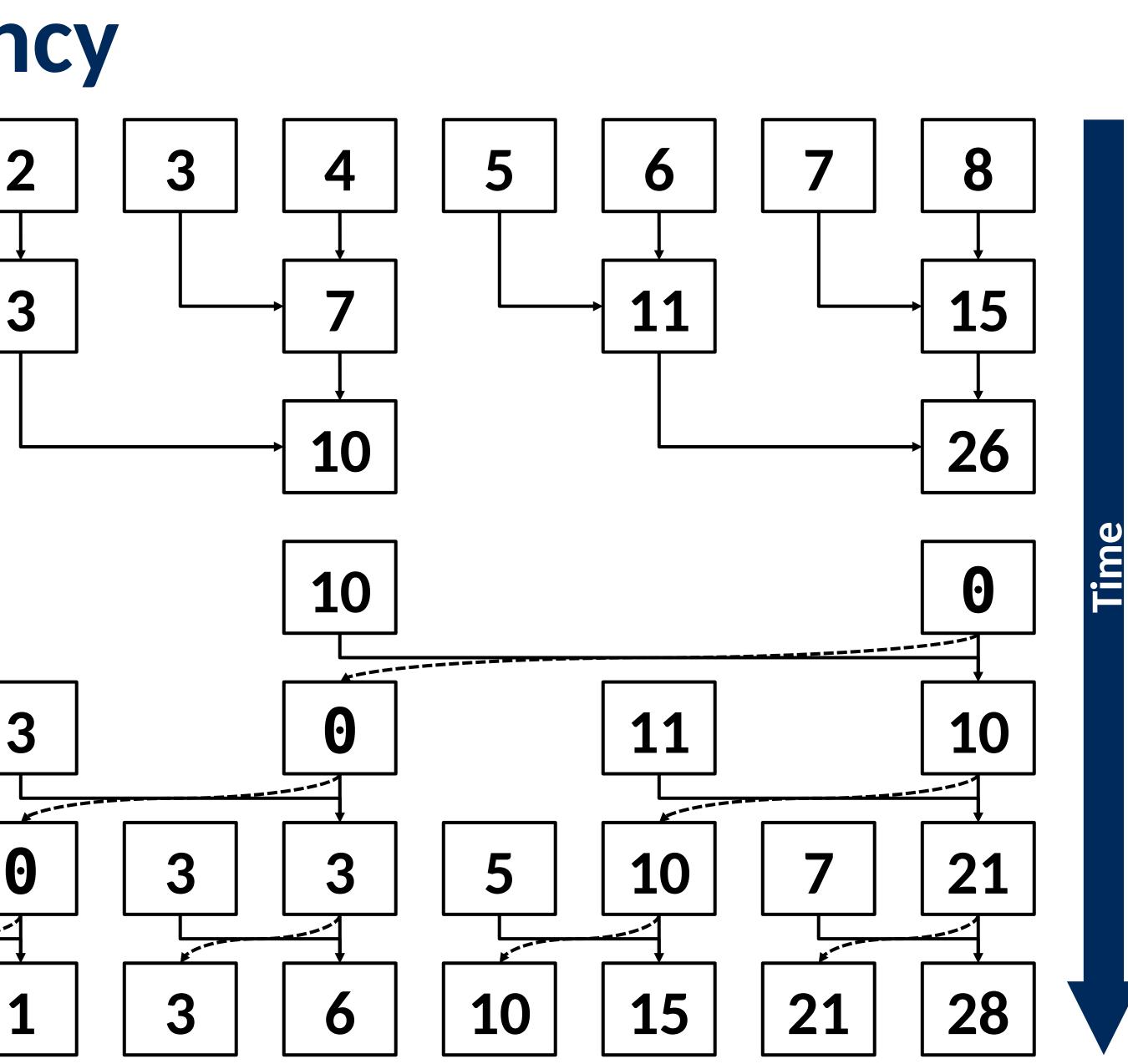
Compute partial sums via a reduction tree.



Combine partial sums across branches.



Blelloch Scan: Efficiency Logarithmic steps along the 2logn critical path. ___ 0

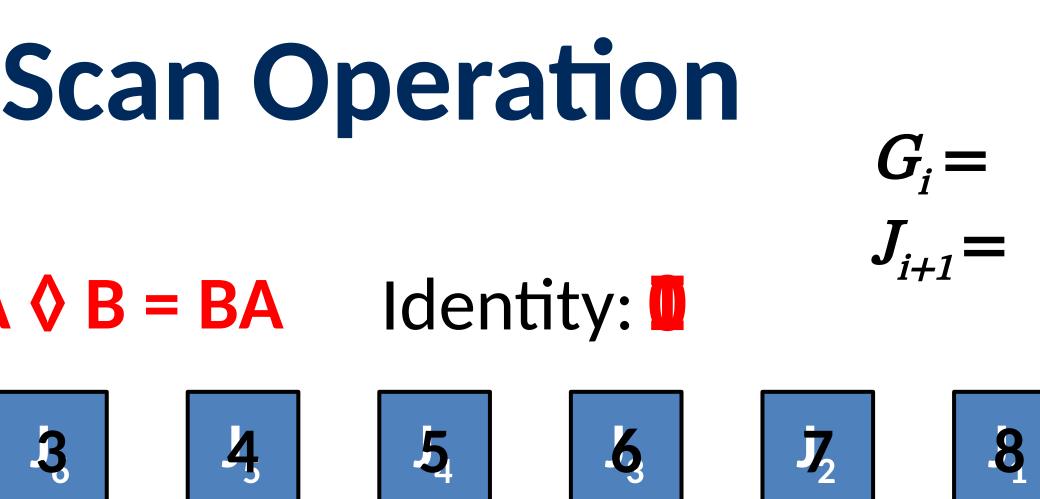


Reformulate BP as a Scan Operation

Binary, **associative** operator: +A **O B** = BA

Input sequence:



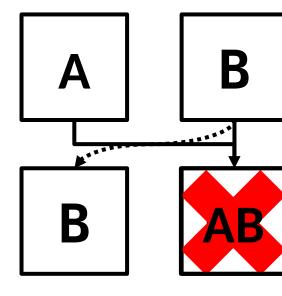


Key Insight: matrix multiplication in **BP** is also **binary** & **associative**!

Scale BP by Blelloch Scan

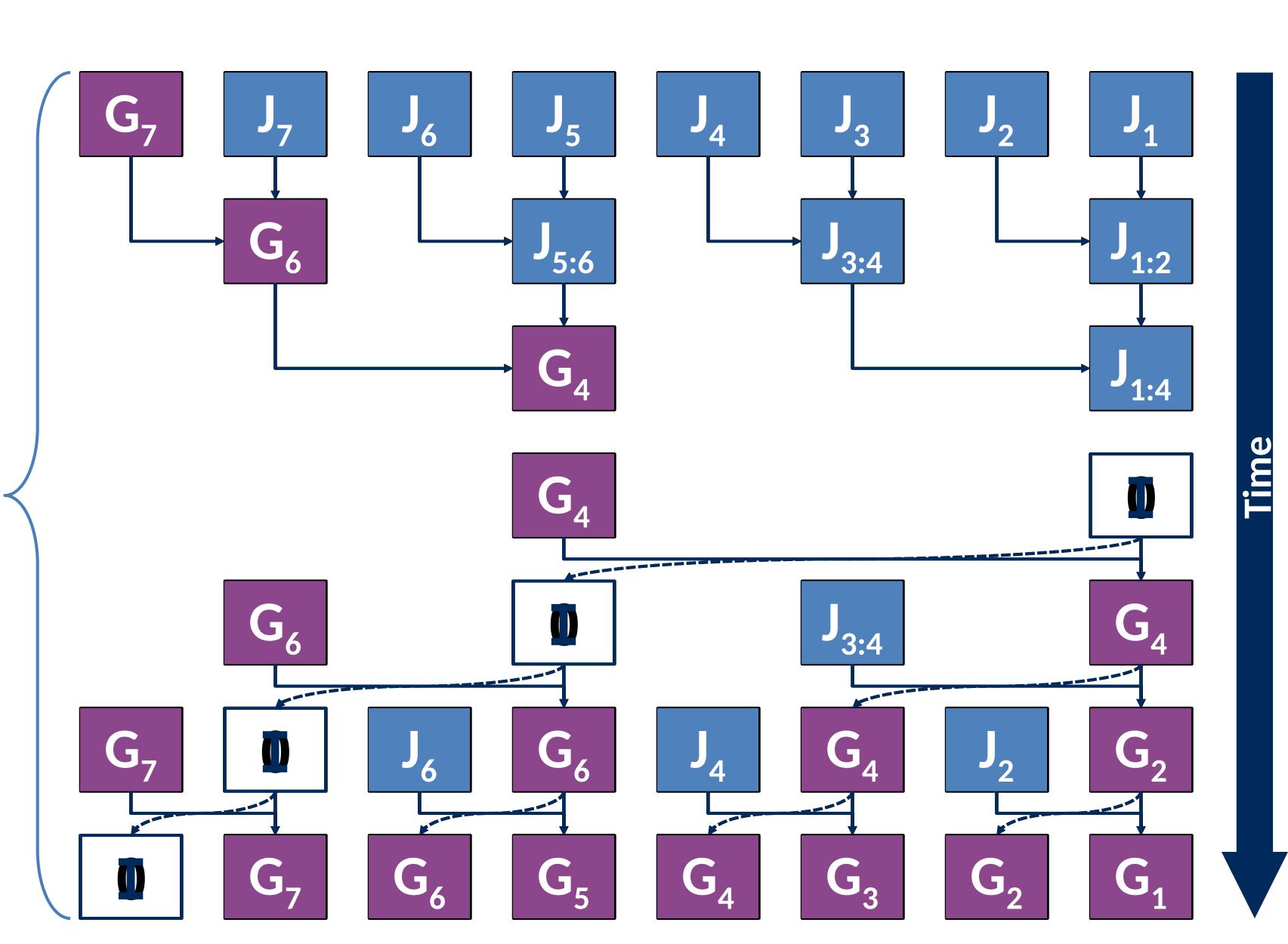
Logarithmic steps along the critical path!

Down-sweep



Matrix multiplications are **noncommutative**.

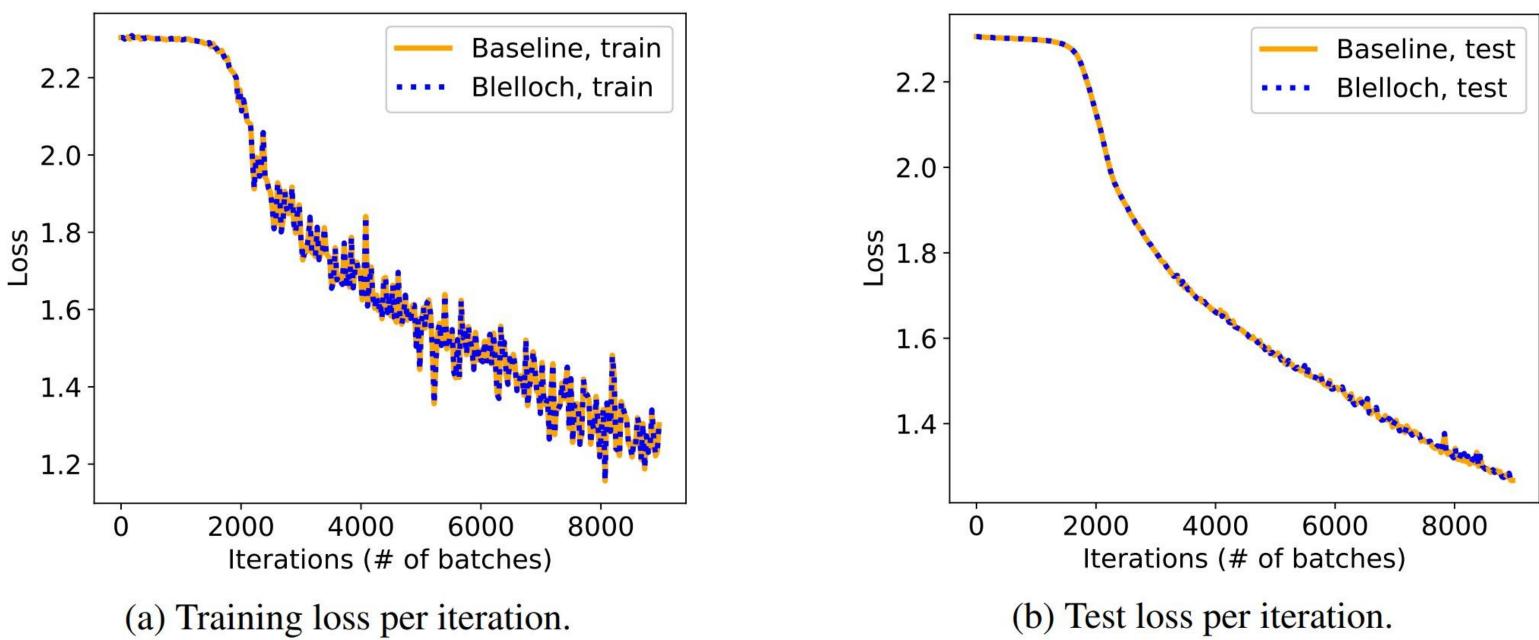
2logn



Reconstructs the Original BP Exactly

Our method produces gradients mathematically equivalent to BP. Empirically show that such differences do not effect convergence.

Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd)



- The Jacobians are multiplied in a different order \rightarrow numerical differences.

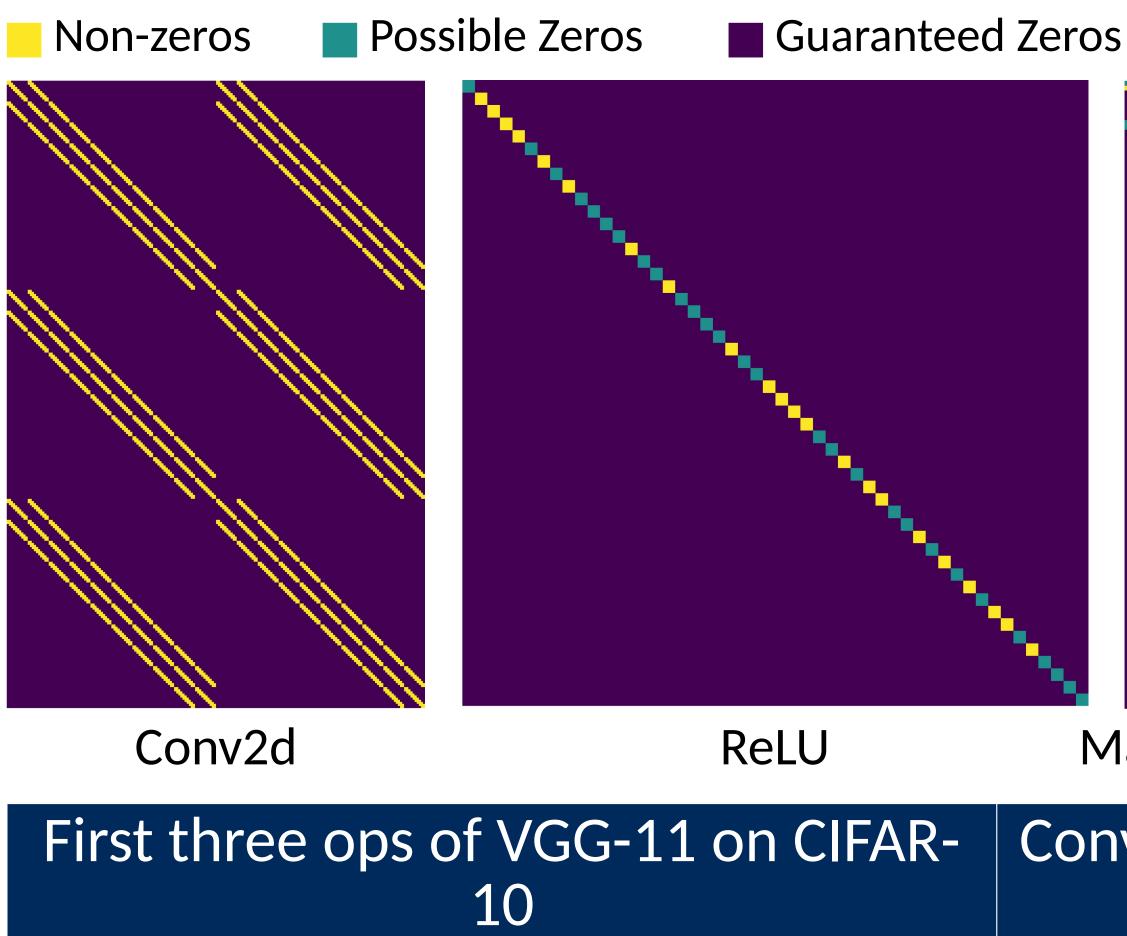
Jacobians are Memory & Compute Hungry

- A full Jacobian can be prohibitively expensive to handle.
- e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
- Conventional ML algorithms avoid using Jacobians directly (including BP).



Generated one row at a time by passing basis vectors into Op Grad() (the VJP function).

The Jacobians of Many Operators are Sparse



Sparsity

Guaranteed zeros:

Known ahead of training time.

Deterministic pattern.

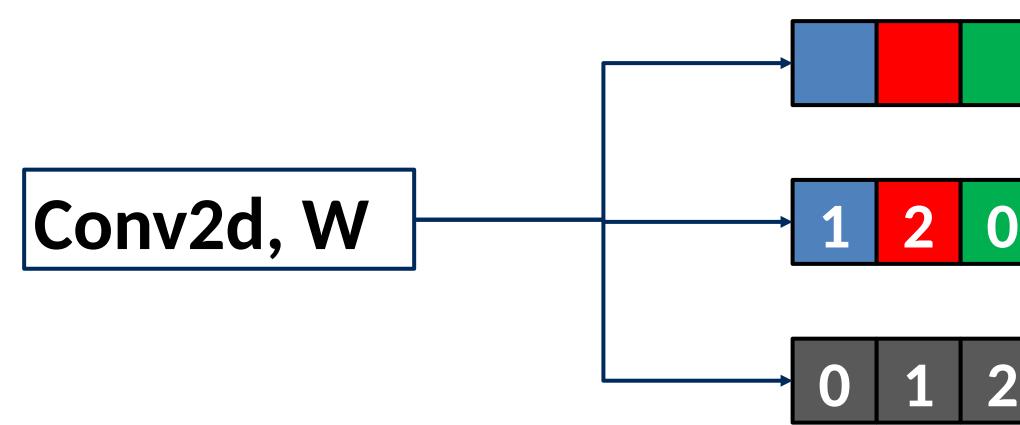
Potentially **better** SpGEMM performance.

MaxPool2D

onvolution	ReLU	Max Pooling
0. 99 157	0. 99 998	0. 99 994

Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise, generate directly into Compressed Sparse Row (CSR):

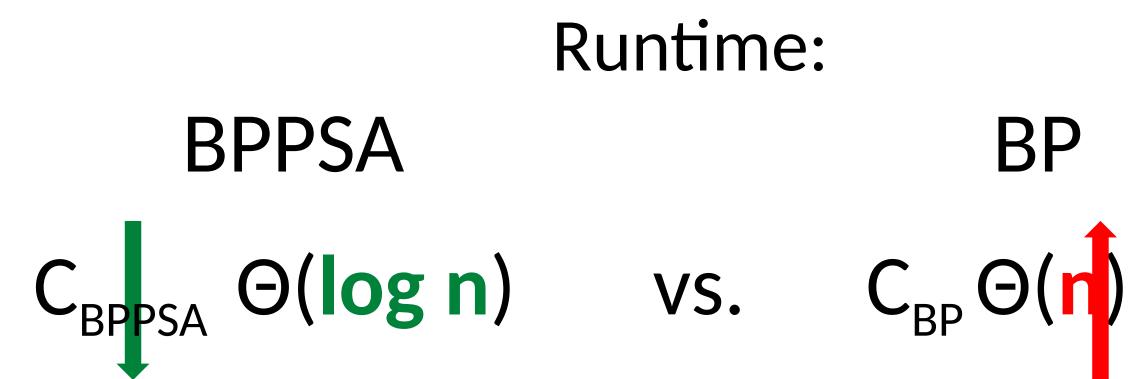


First three ops of Convol ReLU VGG-11 on CIFAR-10

	data	0		0	
03	indices	0	0	0	
2 2 4	indptr		0	0	

Max Poolin ution g

Complexity Analysis

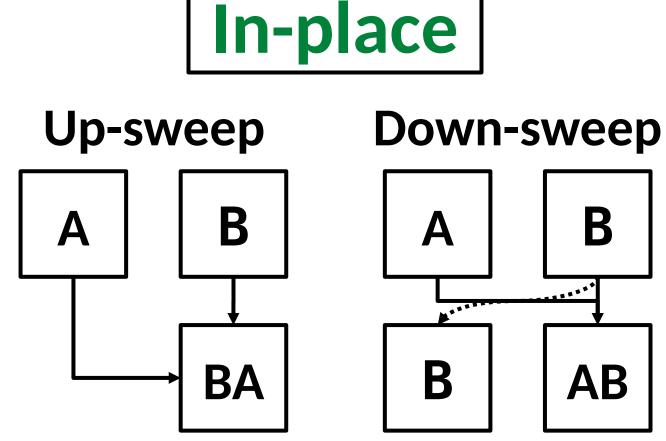


Performance benefits:

- Large **n**: deep network, long sequential dependency. 1.
- Reducing per-step complexity: SpGEMM. 2.

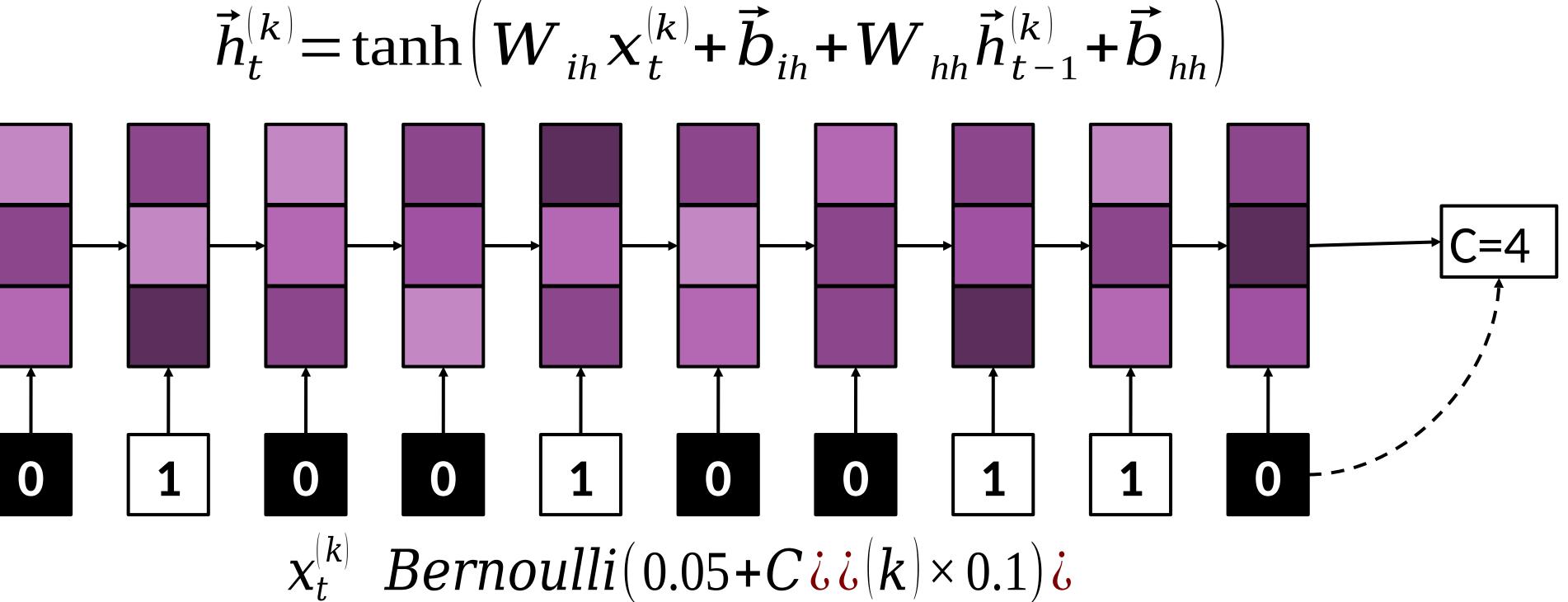
Constant per-device space complexity!

<u>Per-step Complexity (C):</u> runtime of each step.



Methodology: Benchmark

Model: RNN **Task:** Bitstream Classification



$$+\vec{b}_{ih}+W_{hh}\vec{h}_{t-1}^{(k)}+\vec{b}_{hh}$$

Methodology: Environment

Hardware:

Baseline:

OPyTorch

Implementation: custom CUDA 10 kernels.

RTX 2070	RTX 2080 Ti
7.5.1	7.6.2
1.1	1.2

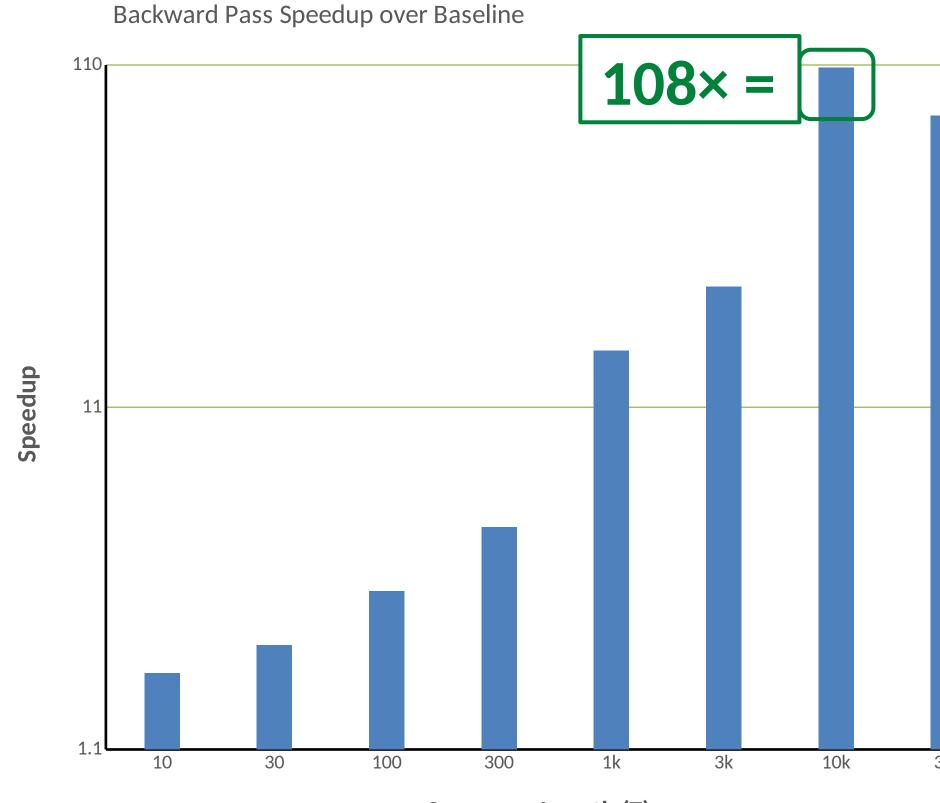
End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline when batch size **B**=16, sequence length **T**=1000:



80

Sensitivity Analysis: Model Length



Sequence Length (T)

Sequence length (**T**) reflects the model length **n**.

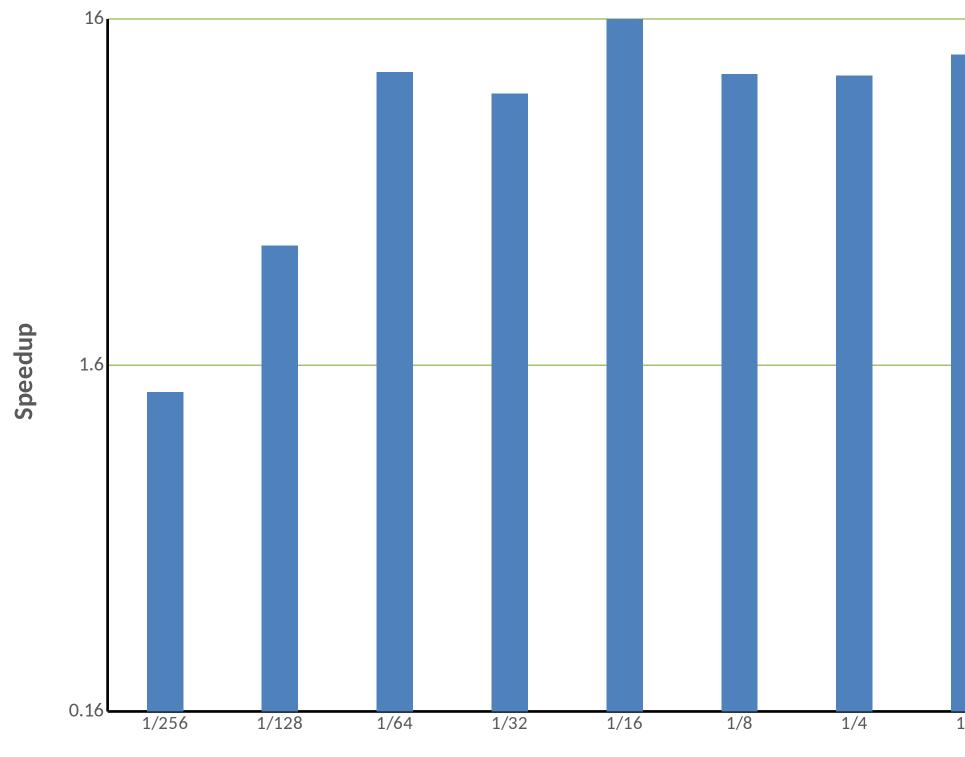
BPPSA **scales** with the model length (**n**);

until being bounded by the number of workers (**p**).

30k

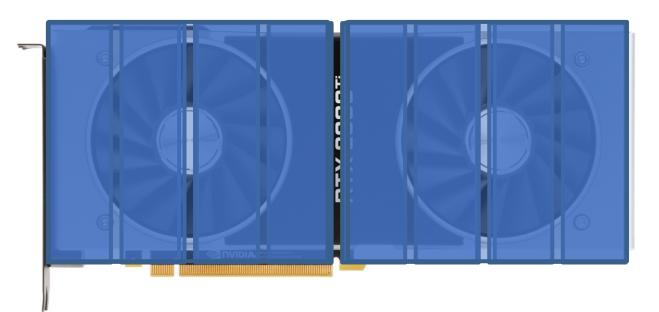
Sensitivity Analysis: Number of Workers

Backward Pass Speedup over Baseline



Fraction of GPU per Sample (1/B)

Fraction of GPU per sample (1/B) reflects the number of workers **p**.

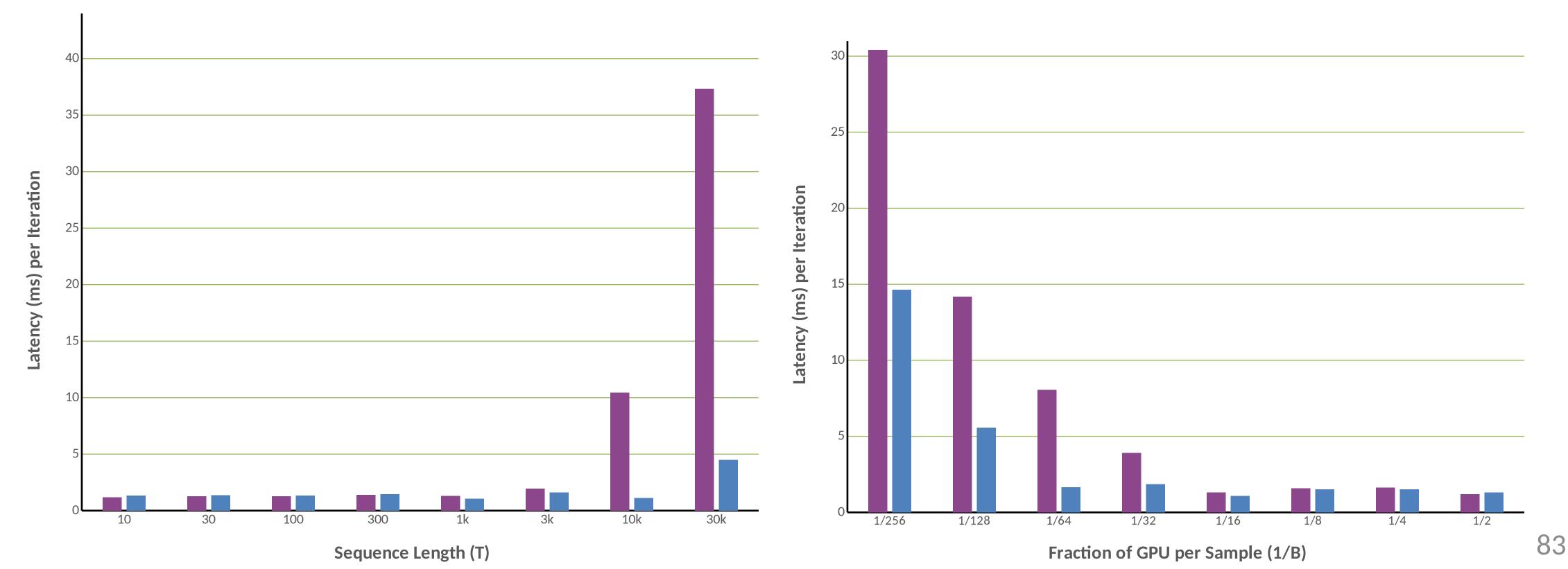


BPPSA scales with the number of workers (**p**).

1/2

Sensitivity Analysis: 2070 v.s. 2080Ti

|#SMs(2070) < #SMs(2080Ti) \rightarrow Latency(2070) > Latency(2080Ti)



<u>SM:</u> Streaming Multiprocessor; i.e., "Parallel Cores".

More Results in the Paper

- End-to-end benchmarks of GRU training on IRMAS.
 - A more realistic version of the RNN results.
- Pruned VGG-11 retraining on CIFAR-10.
 - Microbenchmark via FLOP measurements.
 - Evaluate the effectiveness of leveraging the Jacobians' sparsity in CNNs.

Conclusion

BP imposes a strong sequential dependency among layers during the gradient computations, limiting its scalability on parallel systems. We propose scaling Back-Propagation by Parallel Scan Algorithm

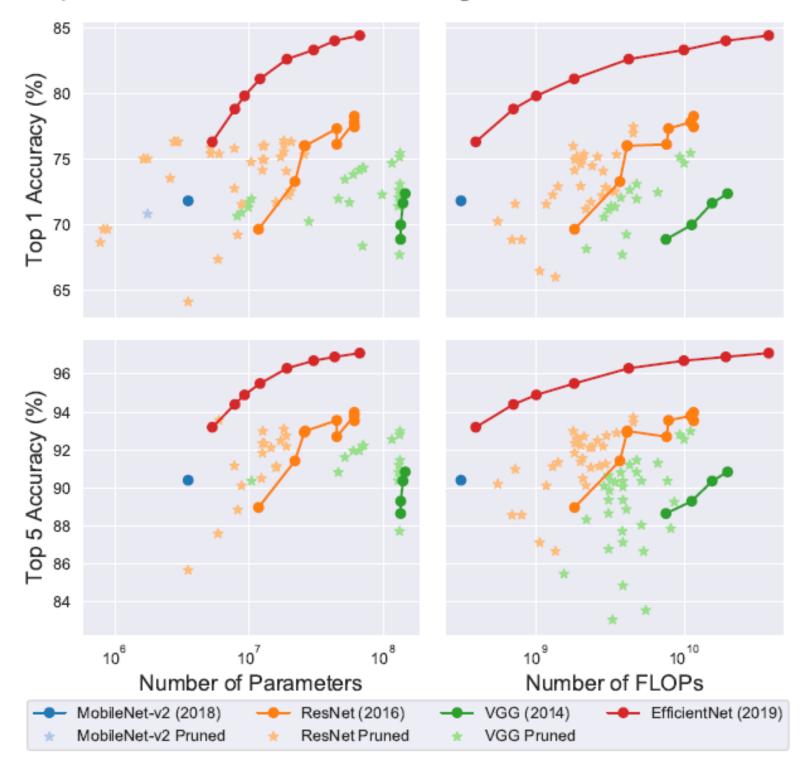
(**BPPSA**):

- Reformulate BP as a scan operation.
- Scale by a **customized Blelloch scan** algorithm.
- Leverage **sparsity** in the Jacobians. •

<u>**Key Results:**</u> $\Theta(\log n)$ vs. $\Theta(n)$ steps on parallel systems. Up to 108× speedup on the backward pass ($\rightarrow 2.17\times$ overall speedup).



DNN Training and Inference : Trends and State-of-the-Art 3. Inference: More Solid Quantization and Pruning



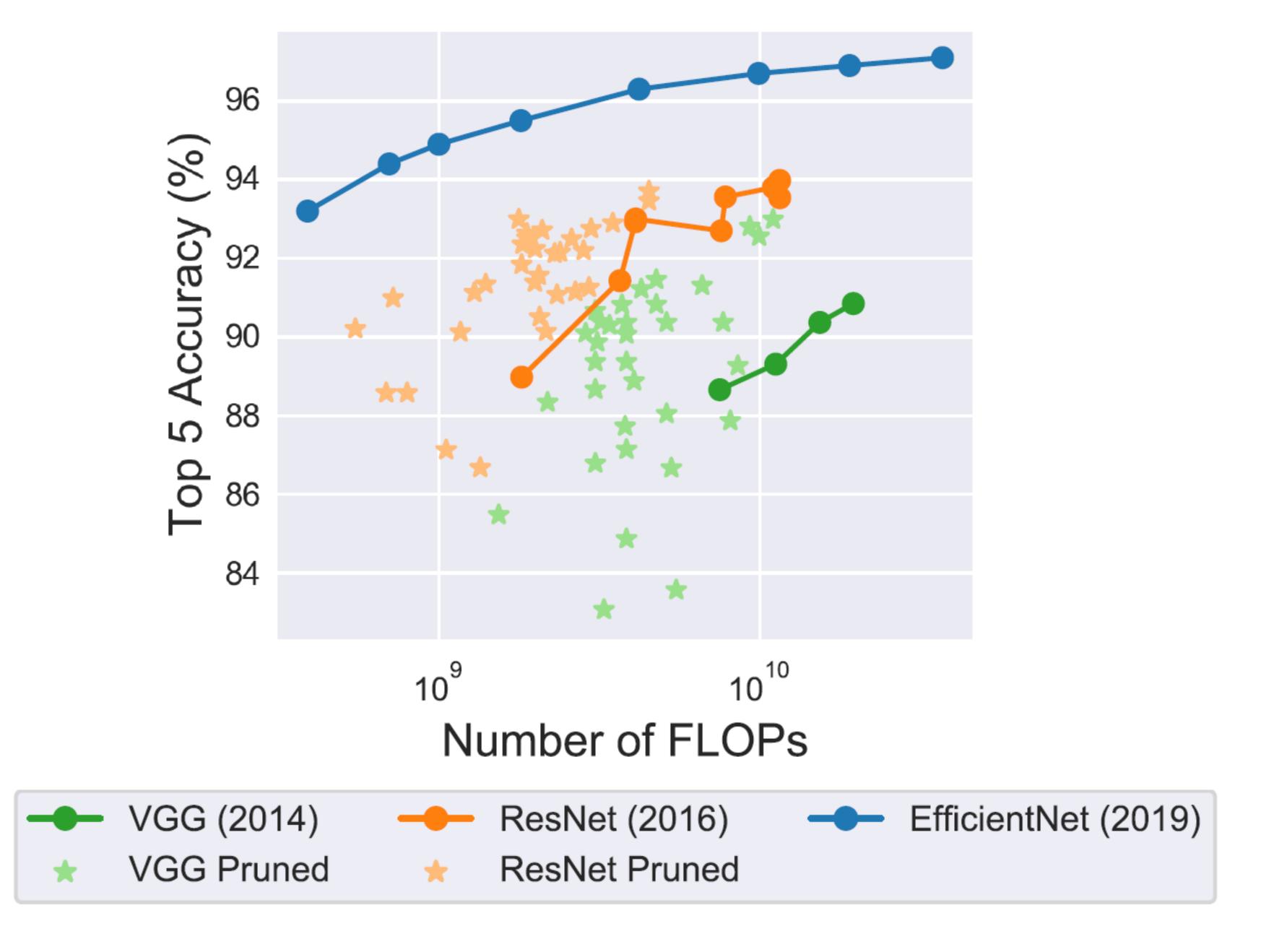
Speed and Size Tradeoffs for Original and Pruned Models

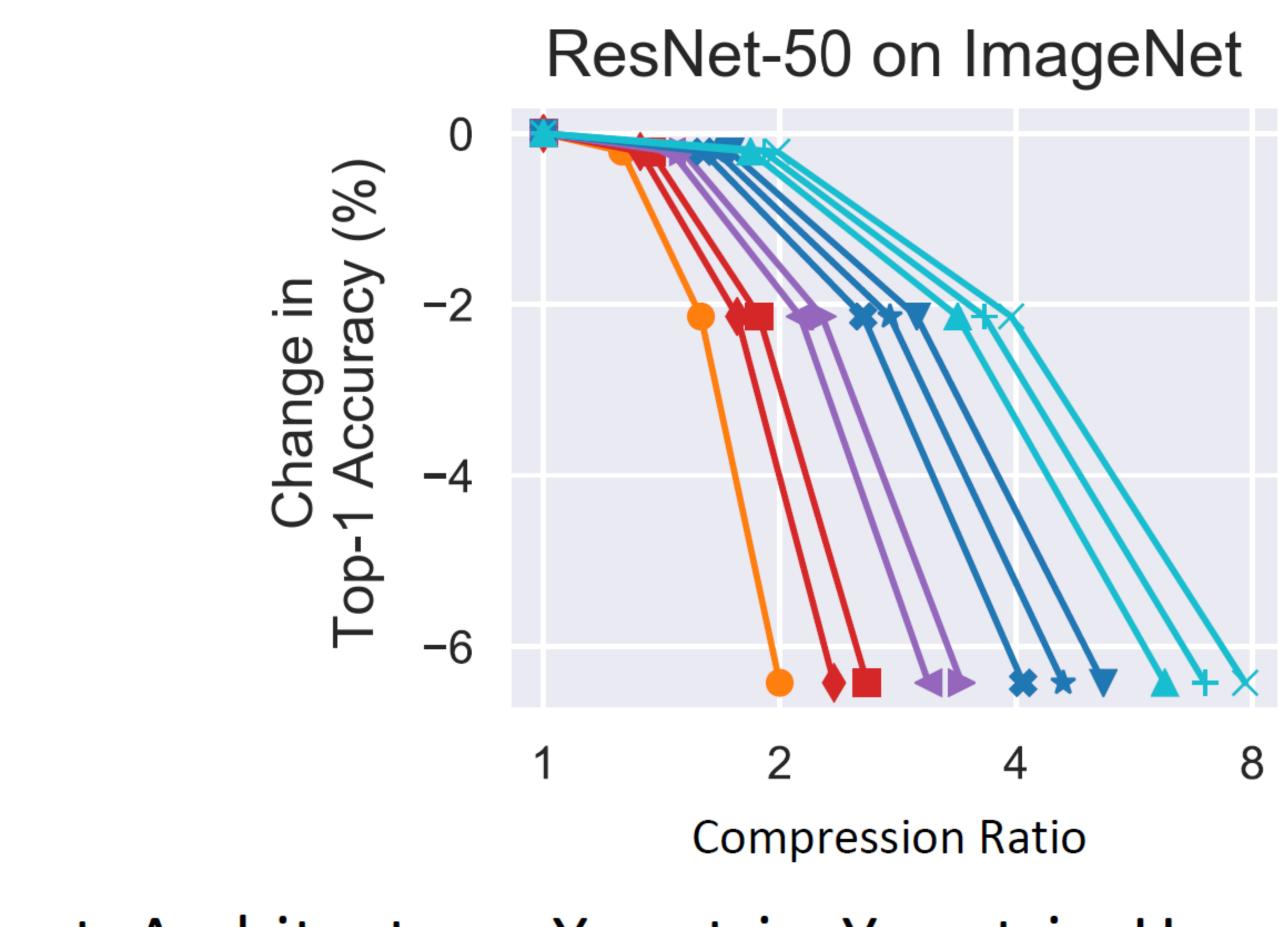
What is the State of Neural Network Pruning?



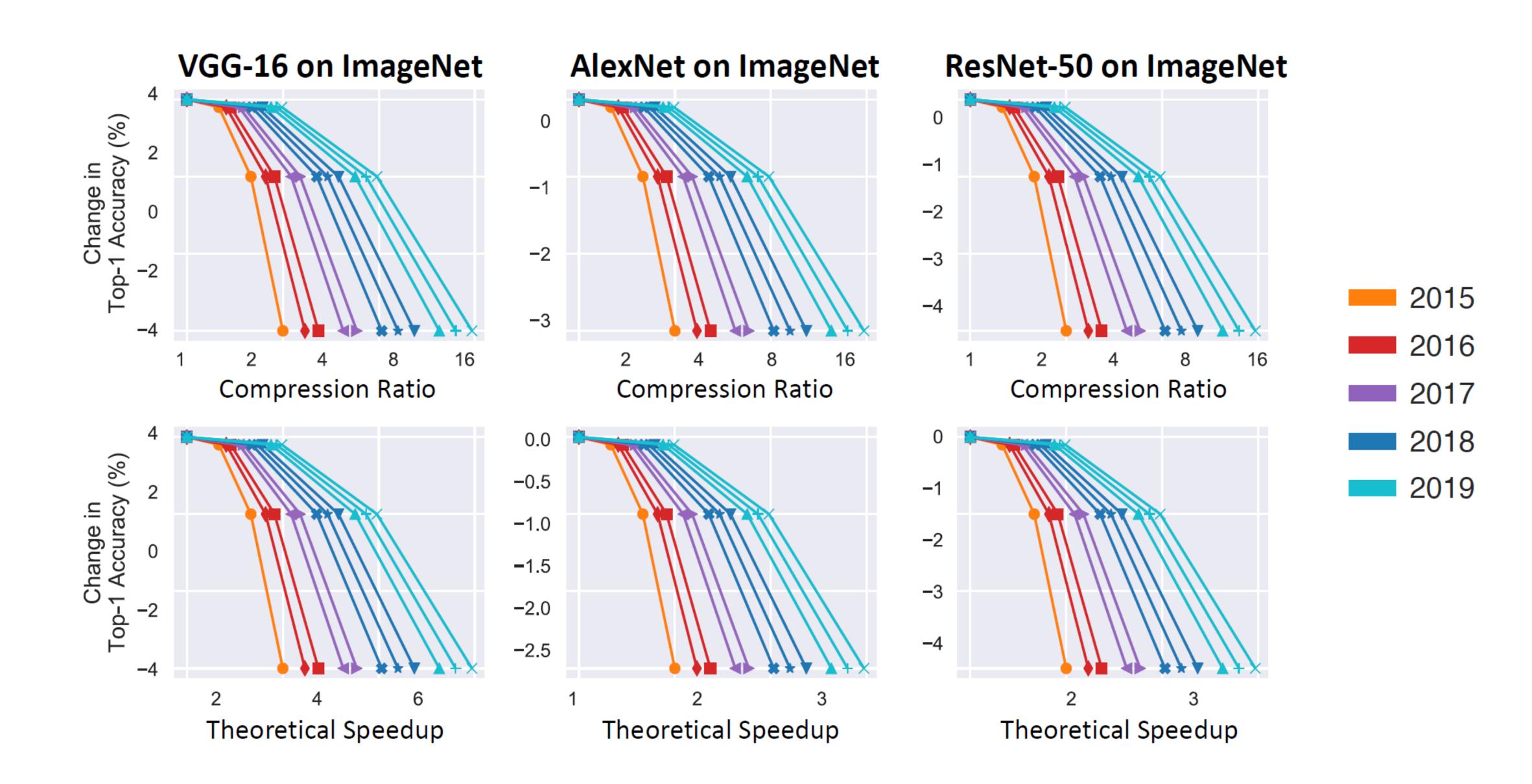
- We aggregated results across 81 pruning papers
- Mostly published in top venues
- Corpus closed under experimental comparison

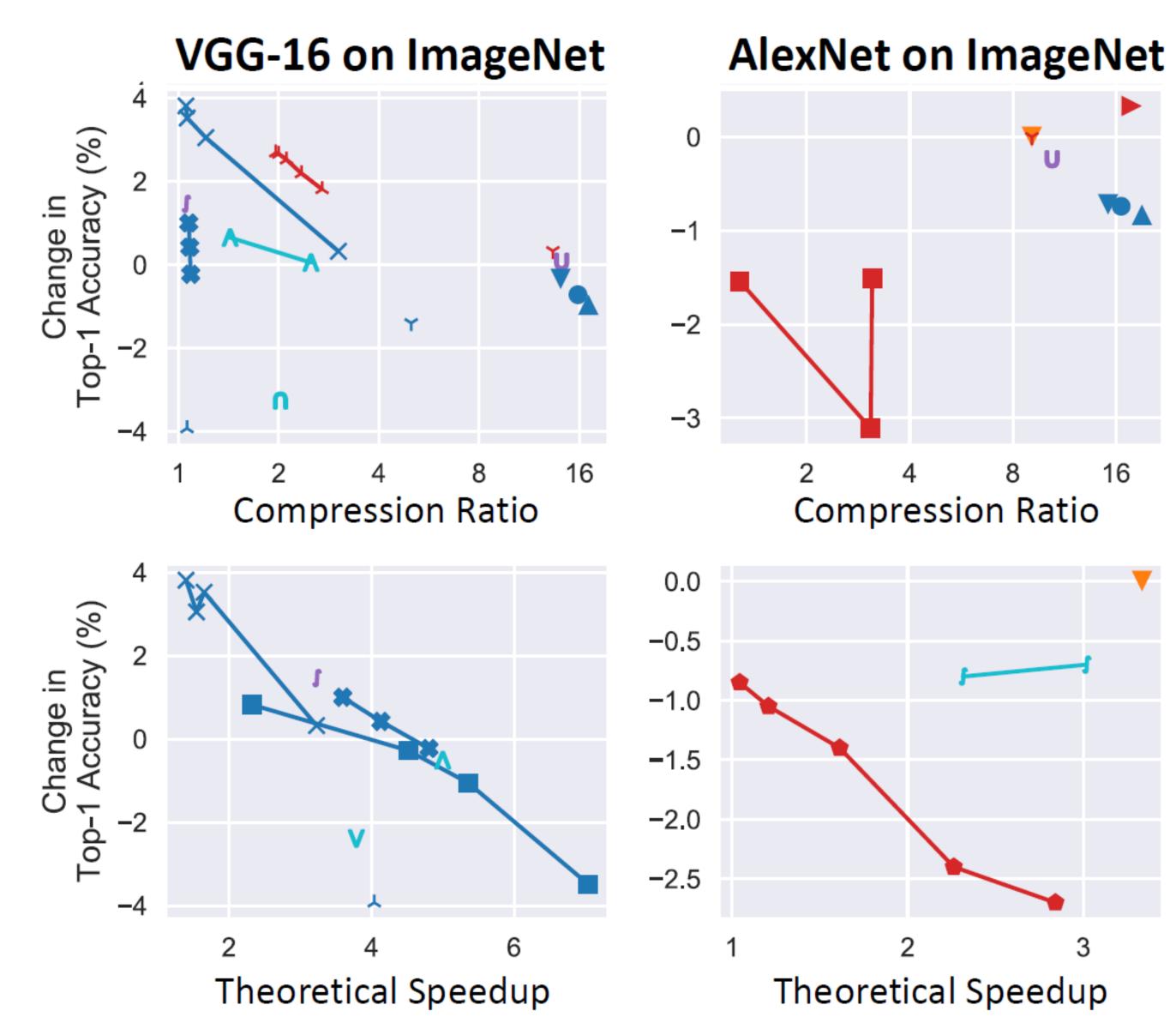
Venue	# of Papers
arXiv only	22
NeurIPS	16
ICLR	11
CVPR	9
ICML	4
ECCV	4
BMVC	3
IEEE Access	2
Other	10

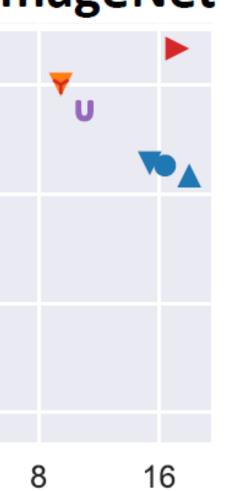


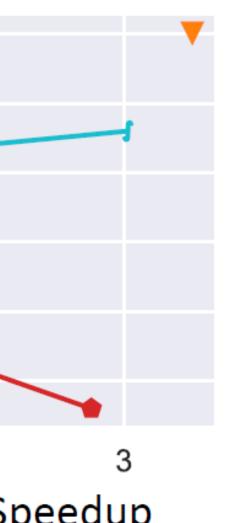


(Dataset, Architecture, X metric, Y metric, Hyperparameters) \rightarrow Curve

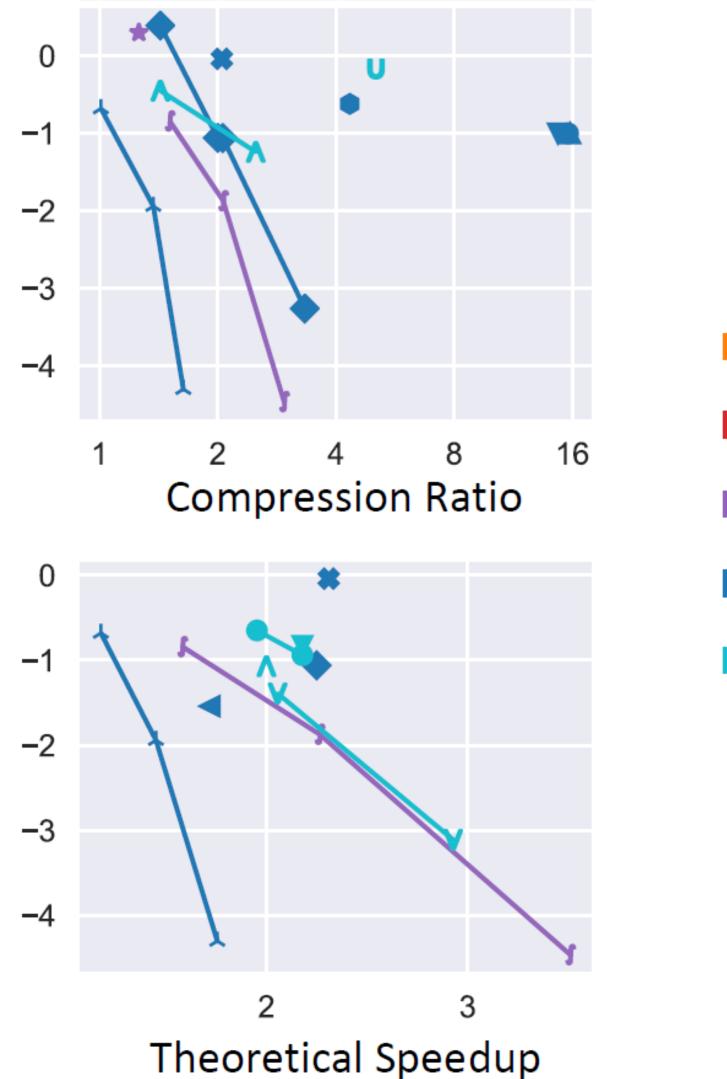








ResNet-50 on ImageNet

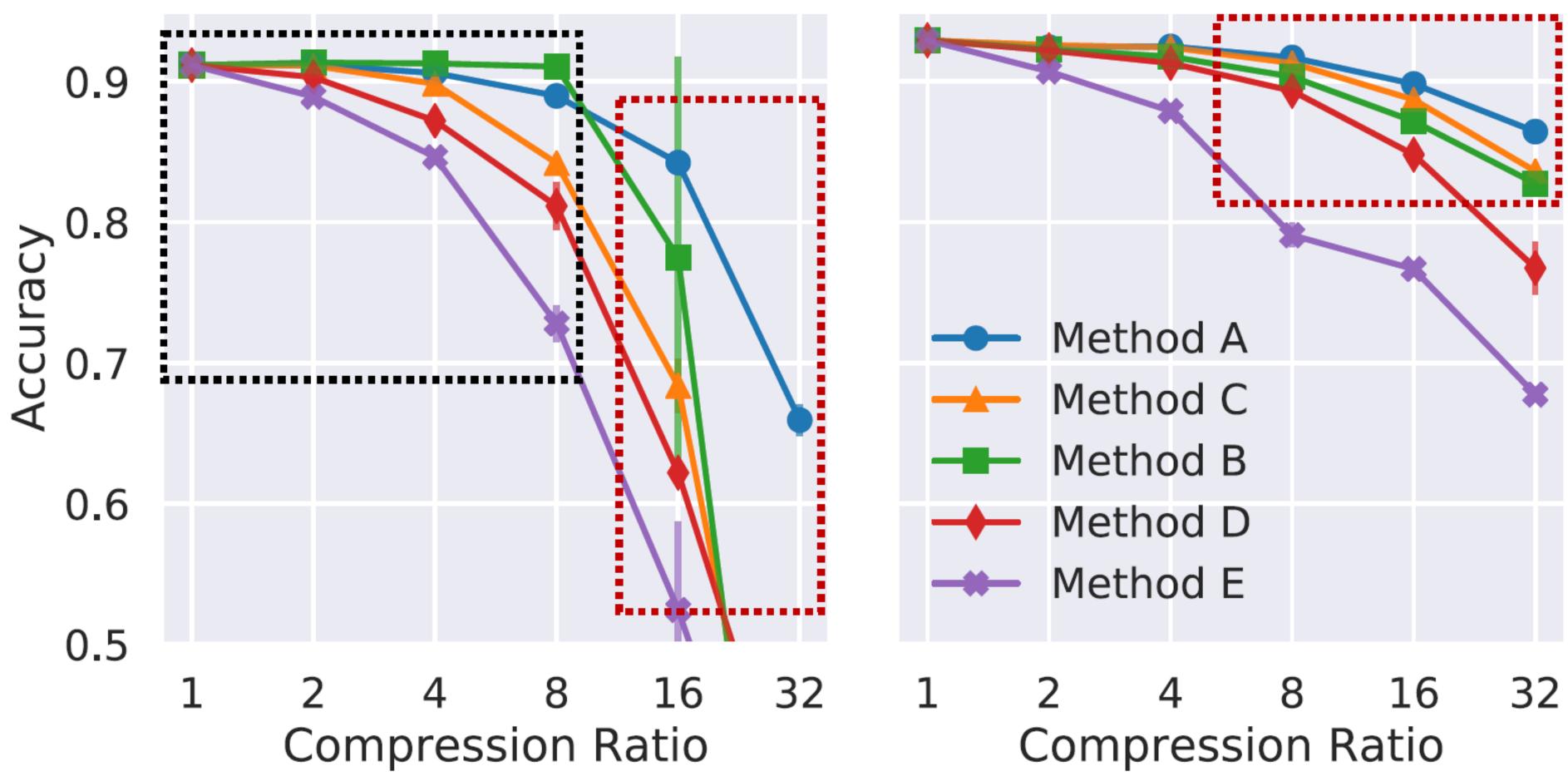


Presence of comparisons:

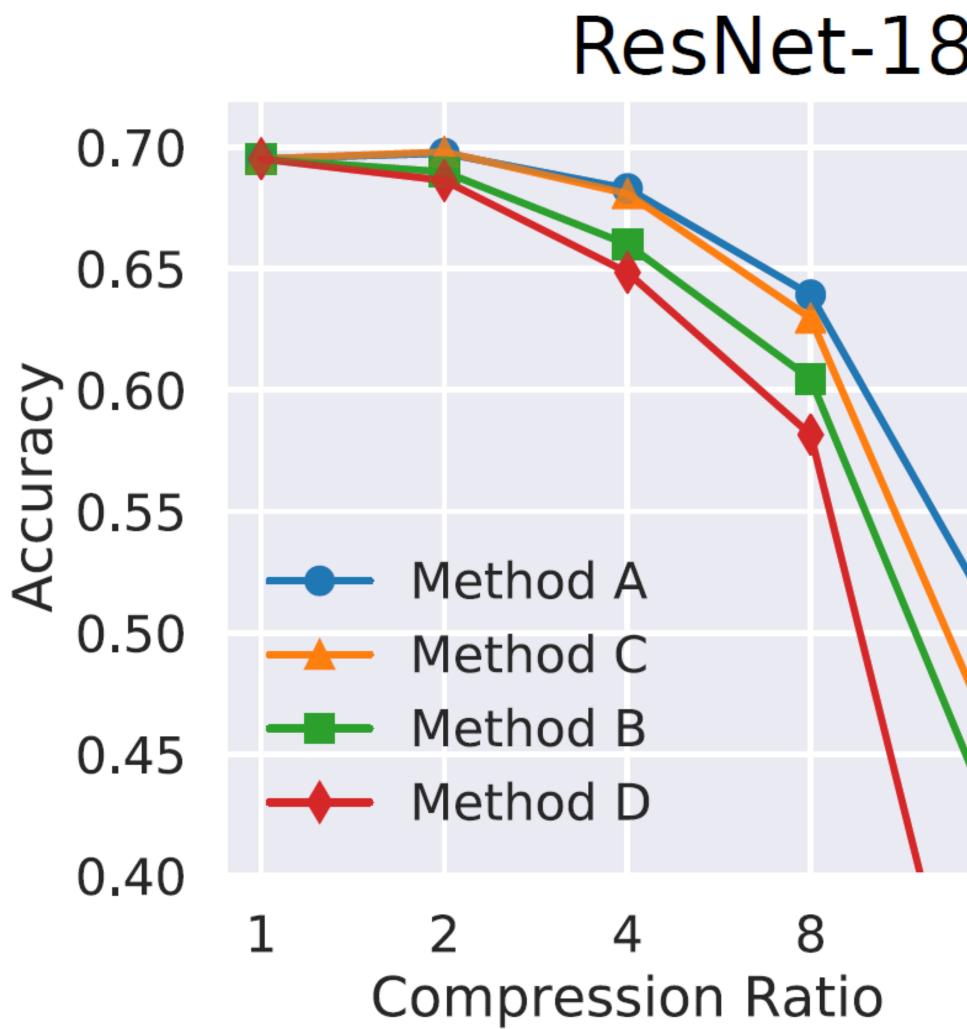
- Most papers compare to at most 1 other method 40% papers have never been compared to Pre-2010s methods almost completely ignored

Reinventing the wheel:

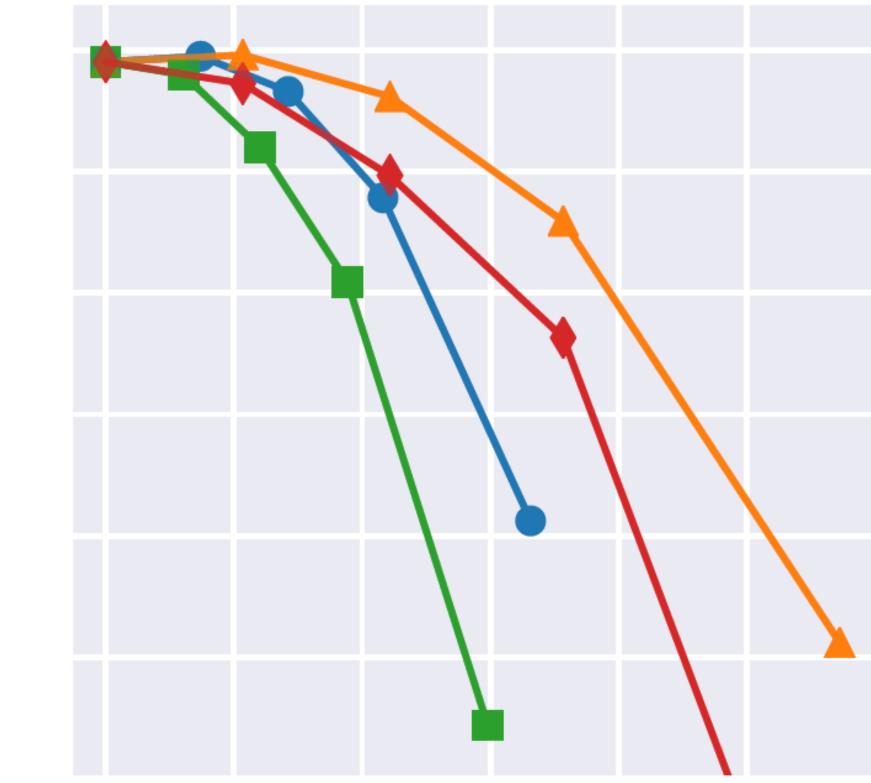
- Magnitude-based pruning: Janowsky (1989)
- Gradient times magnitude: Mozer & Smolensky (1989)
- "Reviving" pruned weights: Tresp et al. (1997)



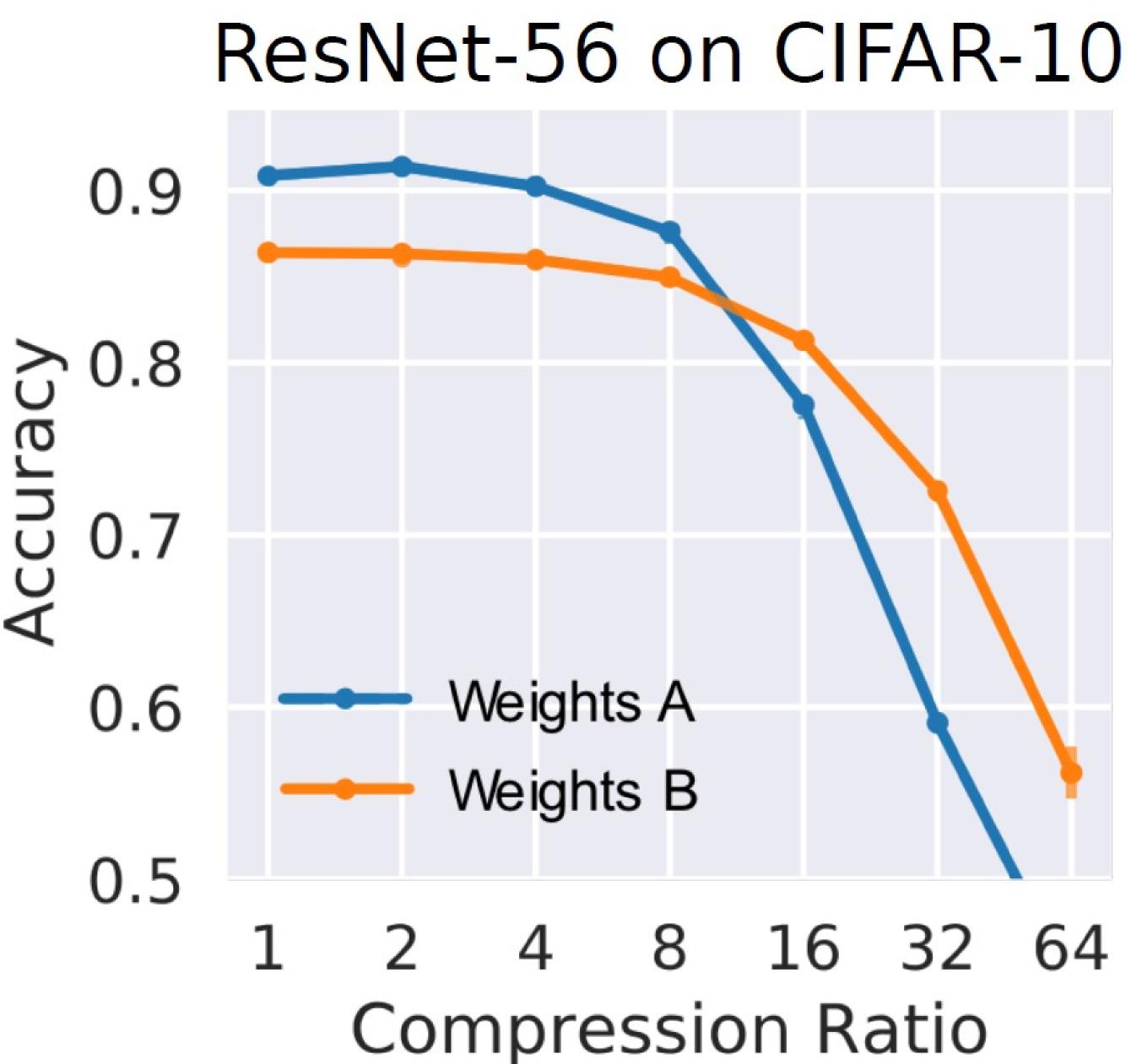
ResNet-56



ResNet-18 on ImageNet



16 32 Theoretical Speedup



Memory-Driven Mixed Low Precision Quantization for Enabling Deep Network Inference on Microcontrollers

Universita' di Bologna, Bologna, Italy

MLSys 2020

DNN Training and Inference : Trends and State-of-the-Art

4. ML Compilers

Existing Efforts: Pros and cons

- TVM, XLA, Glow, PlaidML
 - Don't perform well for training
 - TVM can be 2-3 orders of magnitude worse on important kernels
- We need a new ML compiler with representative IR: - Recent papers from our group: DietCode (MLSys'22), Roller (OSDI'22), Hidet (ASPLOS'23)

CSC 2224: Parallel Computer **Architecture and Programming DNN Training and Inference :** Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko University of Toronto Fall 2022