CSC 2224: Parallel Computer
Architecture and Programming
DNN Training and Inference:

Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko
University of Toronto
Fall 2022

Review #7

Horizontally Fused Training Array
Shang Wang et al., MLSys 2021

OR

In-Datacenter Performance Analysis of a Tensor Processing Unit,
ISCA’17, Jouppi et al.,

https://dl.acm.org/doi/10.1145/3079856.3080246

Due Nov. 3rd

https://proceedings.mlsys.org/paper/2021/file/a97da629b098b75c294dffdc3e463904-Paper.pdf

UNIVERSITY OF

% TORONTO

7\ VECTOR
INSTITUTE

DNN Training and Inference :
Challenges, Trends, State-of-the-Art

Gennady Pekhimenko, Assistant Professor

EcoSystem Group

Systems/Architecture Is a Servant for ML

ML Researcher

Diverse benchmark
suite with state-of-the-
art models

Performance
bottlenecks in DNN
Training

Analysis &
Optimizations

Key performance
metrics

Tools

DNN Training and Inference :
Challenges

1. Benchmarking

ISCA 2020

Diverse benchmark
suite with state-of-the-
art models

Analysis &

Optimizations

Training Benchmarks for DNNs (TBD)

Image
Classification

Machine
Translation

Object Detection

Speech
Recognition

Recommendation
System

Adversarial
Network

Reinforcement
Learning

ResNet-50 ;¢
Inception-v3 7, ¢ ImageNet
Seq25eq 4,
Transformer ,,, IWSLT15
Faster RCNN .,
Mask RCNN . Pascal VOC
Deep Speech 2, LibriSpeech
NCF , MovielLens
WGAN Downsampled
' ImageNet
A3C 7y Atari 2600

(Footnotes indicate available implementation: T for

50 (152 max)
42

5
12

101

7 (9 max)

14414

4

CONV

LSTM
Attention

CONV

RNN

GMF, MLP

CONV

CONV

Hongyu Zhu

Bojian Zheng
Andrew Pelegris

Hongyu Zhu
Zilun Zhang

Kuei-Fang Hsueh
Jiahuang Lin

Izaak Niksan

Andrew Pelegris

Mohamed Akrout

%, M for @xnet, C for CMN'lﬁ'K' P for pytbrcH)

Our Focus: Benchmarking and Analysis

TBD Benchmark Suite -

Training Benchmark for DNNs ¥ TORONTO Research

Benchmarks Datasets Tools Analysis People EcoSystem (Univ. of Toronto) + Fiddle (MSR)

TBD - Training Benchmark for DNNs

TBD is a new benchmark suire for DINN training that currently covers six major application domains and eight ditferent stare-of-the-art moedels, The applications in this suire
are selected based on extensive conversations with ML developers and users from both Industry and academia. For all application domains we select recent models capable
of delivering state-of-the-art results. We intend to continvally expand TBD with new applications and models based on feedback and support from the comumunity,

This s a jolnt project between the CeoSystem Research Group at University of Toronto and Project Fiddle at Microseft Research, Redmond.
We also have collaborators from TIBC and University of Michigan,

e benchmark suite is now open sourced on GithubSe,

Read Full Arxiv Paper BibTeX Relerenee SysML Short Paper

Application Model Number of Layers Dominant Layer Implementations Muintainers

Image classification ResNet-30 S0 (152 max) CONY TensorFlow, M3xNer, CNTK ITongyu Zho
Inception-v3 4z

Muchine translation Heu2Sen 3 [L5TM Tensorl low, MXNel Boitan Ahang

Building tools to analyze ML
performance/efficiency

http://tbd-suite.ail

MLPerf

A broad ML benchmark suite for measuring performance of ML software
frameworks, ML hardware accelerators, and ML cloud platforms.

Qithmiccinn NDeadline

Industry/Academia de-facto
standard

https://mlperf.org/

http://tbd-suite.ai/
https://mlperf.org/

MLPerf Training Results v0.6 (July 10th, 2019)

Closed Division Times

Benchmark results (minutes)
Object

Image detection, |Object Reinforce-

classifi- light- detection, |Translation | Translation |Recom- ment

cation weight heavy-wt. |, recurrent |, non-recur. | mendation |Learning

MovieLens-

ImageNet |COCO COCO WMT E-G |WMTE-G |20M Go

ResNet-50 |SSD w/ Mask-
Submitter|System Processor |# |Accelerator|# Software v1.5 ResNet-34 |R-CNN NMT Transformer |[NCF Mini Go Details |[Code
Availat!s in cloud [| | f f) | | _)
0.6-1 |Google |[TPUv3.32 ~J TPUV3 16 |TensorFlow, TPU 1.14.1.dev 42.19 12.61 107.03 12.25 10.20 [1] details [code
0.6-2 |Google |TPUv3.128 }RU\JS 64 |TensorFlow, TPU 1.14.1.dev 11.22 3.89 57.46 4.62 3.85 [1] details [code
0.6-3 |Google |TPUv3.256 TF’l}]uS 128 | TensorFlow, TPU 1.14.1.dev 6.86 2.76 35.60 3.593 2.81 [1] details |code
06-4 |Google |[TPUv3.512 TF’}JUS 256 | TensorFlow, TPU 1.14.1.dev| 3.85 1.79 2.51 1.68 [1] details |code
0.6-5 |Google |TPUv3.1024 //'FIsU\.rS 512|TensorFlow, TPU 1.14.1.dev| 2. 27 1.34 2.1 1.05 [1] details |code
5:6-6 |Google |TPUv3.2048 ~ [TPUV3 1024 | TensorFlow, TPU 1.14.1.dev 1.28 2] 0.85 [1] details |code

e ____— | Sl Wbttt e A ki | . S =
06-7 |Intel |32x 2S CLX 8260L CLX 8260L 64 TensorFlow 1] 14.43|details | code
0.6-8 [NVIDIA |DGX-1 Tesla V100 8| MXNet, NGC19.05 il 522 [1] details [code
0.6-9 [NVIDIA |DGX-1 Tesla V100 8|PyTorch, NGC19.05 22.36 207.48 20.55 20.34 [1] details [code
0.6-1 DIA |DGX-1 \ Tesla V100 8| TensorFlow, NGC19.05 [1] 27.39|details |code
1{6‘:?/ NVIDIA |3x DGX-1 \{esla V100 24| TensorFlow, NGC19.05 [1] 13.57 |details |code
0.6-12 [NVIDIA |24x DGX-1 Teda V100 192 | PyTorch, NGC19.05 22.03 [1] details |[code
0.6-13 [NVIDIA |30x DGX-1 TESl%V1UU 240|PyTorch, NGC19.05 2.67 [1] details |[code
0.6-14 [NVIDIA |48x DGX-1 Tesl,z{ V100 | 384 (|PyTorch, NGC19.05 1.99 [1] details |[code
0.6-15 [NVIDIA |60x DGX-1 /}‘e/sla V100 | 480|PyTorch, NGC19.05 2.05 [1] details |code
616 |NVIDIA [130x DGX-1 _—1 |TeslaV100 | 1040[MXNet, NGC19.05 1.69 [1] details |code

0.6-17 [N DG X-2 i Tesla V100 16| MXNet, NGC19.05 5187 [1] details [code
0.6-18 |[NVIDIA |DGX-2 Tesla V100 16| PyTorch, NGC19.05 12.21 101.00 10.94 11.04 [1] details |code

11

MLPerf Inference Results v0.5 (Nov. 6, 2019)

Inf-0.5-14 [dividiti Firefly-RK3399 (firefly) 80.12 391.02
Inf-0.5-15 [Google Cloud TPU v3 16,014.29 32,711
Inf-0.5-16 | Google 2x Cloud TPU v3 65,43
INnf-0.5-17 | Google 4x Cloud TPU v3 130,83
Inf-0.5-18 | Google 8x Cloud TPU v3 261,58
Inf-0.5-19 _CME 16x Cloud TPU v3 524,97
-0.5-20| Google 32x Cloud TPU v3 1,038,511
Inf-0.5-21 [Habana Labs HL-102-Goya PCl-board > 0.24 700.00 14,45

=0.5-22 | Intel Intel® XeWO’fﬂ:}rocessors

Inf-0.5-23 m [INtel® Xeon® Platinum 9200 processors 0.49 27,244 .81 29,203.30 1.37 4,850.62 0,96:
Inf-0.5-24 [Intel DELL ICL i3 1005G1 3.55 507.71 13.58 10
Inf-0.5-25 [NVIDIA Supermicro 4029GP-TRT-OTO-28 8xT4 (T4x8) 6,320.00 135,073.00 141,807.00 1,920.00 41,546.64 44 97
Inf-0.5-26 [NVIDIA Supermicro 6049GP-TRT-OTO-29 20xT4 (T4x20) 103,532.10 113,59,
Inf-0.5-27 [NVIDIA SCAN 3XS DBP T496X2 Fluid (TitanRTXx4) 8,704.00 199,098.30 222,388.00 2,560.00 60,030.57 66,25
Inf-0.5-28 [NVIDIA NVIDIA Jetson AGX Xavier (Xavier) 0.58 302.00 6,520.75 2.04 100.00 2,15

Inf-0.5-29 [Qualcomm SDM855 QRD 3.02 8.95

‘\
mwaba T-Head Alibaba HanGuang \ 0.17 2,692.00 45,169.48 69,30
\IQ@-SZ Centaur Technology Centaur Technology Refe&u%’ﬁesign v1.0 0.33 6,042.34 1.05 1,21
— —

MLPerf becomes de-facto standard

MLPerf Training Benchmark

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos,
Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon
Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen,
Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock,

Xinyuan Huang, Atsushi lke, Bill Jia, Daniel Kang, David

Kanter, Naveen Kumar, Jeffery Liao, Guokal Ma, Deepak
Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian

Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John,

Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi
: gy Yamazaki, Cliff Young, and Matei Zaharia

MI Sve 20220

MLPerf Inference accepted to ISCA 2020

DNN Training and Inference :
Challenges

2. Tools and Metrics

Analysis &

Optimizations

Key performance
metrics

17

Performance Metrics

® Throughput
Number of data samples processed per second

® Compute Utilization
GPU busy time over Elapsed time

® FP32/FP16/Tensor Core Utilization

Average instructions executed per cycle over Maximum instructions
per cycle

® Memory Breakdown
Which data structures occupy how much memory

Tools

Analysis &

Optimizations

19

BERT: Memory Profile

B PositionwiseFFN
Q1 I AttentionCell
B Embed
[—1 Others | B
6- 2 Untrackable -

EN

[274]
!

o

1 19%

L 1%

Memory Consumption (GiB)

-

B Feature Maps
B Parameters

1 Others
271 Untrackable

Layer Data Structure
GPU Memory Consumption Breakdown

Feature maps are still dominant in many new models

Network Profiling

Our network profiler shows the communication traces

1,200 ms |1,40D ms |1,Eiﬂ{l ms 1,800 ms
]]] 1l]]]]]]]]]]
- 537.659 ms -

__Push__convl_1 weight_ 1728

— I
I
I

21

Skyline Demo at MLSys 2020

MuSkyline

Interactive In-editor Performance
Visualizations and Debugging for DNN
Training

Geoffrey X. Yu, Tovi Grossman,
Gennady Pekhimenko

VECTOR

UNIVERSITY OF
TORONTO INSTITUTE

¥ resnet.py — ~fprojects/remote/skyling/resnet

191

resnet. py
Ldyels = LI
layers.append(block{self.inplanes, planes, stride, downsample, self.groups,
self.base _width, previous_dilation, norm_layer))
selT.inplanes = planes * block.expansion
for _ in rangel(l, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,

base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer)})

return nn.Sequential(xlayers)

def forward(self, x, target):
¥ = self.convlix)

= self.bnl(x)

self.relu(x)

= self.maxpool{x)

o M
il

= self.layerl(x)
= self.layer2(x)
self.layer3(x)
= self. layerd(x)

Boow N
I

% = self.avgpool(x)
% = torch.flatten(x, 1)
¥ = self.fcix)

return self.loss_fn{x, target)

def _resnet{arch, block, layers, skkwargs):
return ResNet(block, layers, sskkwargs)

def resnetlB(*+kwargs):
r'"“ReshNet-18 model from

"Deep Residual Learning for Image Recognition™ <https://farxiv.ora/pdf/1512.03385.pdf> _

Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
e e aTal al=1 = [hanlls TF Triua Adicnl avwwe a3 nranecacc har nf tho AdAoeinlaad 0 ctdar e

~(projects/remote/skyling/resnet/resnet.py 1911

lih Skylina

& Training Throughput

THROUGHPUT

160

samples/second

PREDICTED MAXIMUM

182

samples/second

&
S & Peak Memory Usage

Eorward and Badc

Pear USAGE

1575

Megabytes

MAX IMUM CAPACITY

7974

begabytes

Ready

UTF-8 Python nGitHuh o Git (0] 9 1 update

Tired of not knowing why your
model is slow and/or uses up so
much memory?

Sam Bowman
@sleepinyourhat

F

Any tips on|identifying speed bottlenecks (profiling)|with

Hal Daume llI
@haldaume3

@PyTorch? Right now bumbling along with cProfile.

QO 28 12:16 PM - May 26, 2017

2 See Sam Bowman's other Tweets

@ Sam Bowman @sleepinyourhat - May 26, 2017

Any tips on identifying speed bottlenecks (pr
@PyTorch? Right now bumbling along with «

Joachim Hagege
@JoachimHagege

Hi Sam. I'm|struggling with same issue right

Did you identify best practices since posting

Thanks !

© 10:32 AM - Nov 11, 2018

2 See Joachim Hagege's other Tweets

useful...

Q12 3:47 PM - May 7, 2017

’l‘ Jeremy Howard
" @jeremyphoward

2 See Hal Daumé lll's other Tweets

L

Does anyone have any detailed tips, walkthrus, or tutorials on

how to|profile @PyTorch code running on the GPU?|

I'm trying to optimize efficientnet and want to see exactly where

the time is spent.

QO 312 10:29 AM - Oct 25, 2019

Q) 62 people are talking about this
dvice for|debugging slow backw... - ——_

% mrdrozdov Andrew Drozdov
L

Apr'17

| am working with a recursive neural network where the forward pass takes roughly 2s on average, and
the backward pass closer to 7 or 8s. Does this sound like normal behavior? | wonder what | could be
doing which is causing such a slowdown.

| have a lot of narrow/chunk/cat in the model. Could this be a factor?

created

& Apr 17

last reply
"7 Dec'17

4

replies

1.3k

VIEWS

4

users

®

)3 people are talking about this

ion|running very slow?:|l a
mount of training set, it is t:
y code, | found the loss.bac
er, both score and target a

2019

r Tweets

lay.

so.|my pytorch code is slow.|what do people us for profiling?
cProfile just tells me run_backward is expensive, which is not so

®

> of code|and

her | know.

Model
Model
Model
Model
Model
Model
Model

time
time
time
time
time
time
time

on
on
on
on
on
on
on

dynamic attentior
| use two for loops

®

! Sam Bowman @sleepinyourhat - May 26, 2017

Any tips on identifying speed bottlenecks (profiling) with
@PyTorch? Right now bumbling along with cProfile.

‘ Zico Kolter
@zicokolter

rsperse torch.cuda.synchronize() Iiberallylwhen debuggi
a code, to see where the bottlenecks acually are...

- 3:09 PM - May 27, 2017
see Zico Kolter's other Tweets

ely slow ‘

Profiling pytorch scripts?

&

hughperkins

I've written a pytorch script, am:' looking to speed it up.

I've tried the following:

* use a cd.4xlarge, in cpu mode, instead of Mac OS X, in ¢
Mac ()
* use an aws g2, in cuda mode == twice as fast as Mac lap

* use an aws p2, in cuda mode == another 50% as fast as |
Mow at this point, I'm not sure which bits are slow

e [f it was a c++ script, that didnt use cuda, | might use eith
debugger, stop it, and store the stacktrace. do this eg 5-1
tend to me in man yof the stackiraces == this is the bottle

* if it was cltorch, or deepcl, well | pre-instrumented them w

* in pytorch cuda, | suppose | should use an nviida profiler®

lts not clear to me which bits of the program are taking the time,
at a higher level than nvidia profiler probably. Thoughts on idea:
pytorch?

Skyline

 Key performance
metrics (throughput,
memory usage)

 |teration run time and
memory footprint
breakdowns

e |nteractive visualizations
linked to batch size
predictions

de

Interactive In-editor Performance Visualizations
and Debugging for DNN Training

1.

UNIVERSITY OF

TORONTO

7\ VECTOR
INSTITUTE

< resnel.py — ~fprojects/remote/skylina/resnet

PR Y Lk Skyline

LdyElS = ||
layers.append({block({self.inplanes, planes, stride, downsample, self.groups,
self.base width,

self.inplanes = planes % block.expansion
for _ in rangel(l, blocks):

previous_dilation, norm_Llayer))

layers.append{block(self. i ines, planes, groups=self.groups,
base width=self.base width, dilation=self.dilation,

rm_layer=norm_layer})
return nn.Sequential(*layers)

o |'-.Ir-.i['.1.].:. % i -\.\'.|'!:._|':_'|.]:
= self.convlix)

= self.bnl(x)

= self.relulx)

M ox M M =h

= self.maxpooli{x)

= self. layerl(x)
= self.layer2ix)
= self.layer3(x) 8 Peak Memory Usage
= self.layerd(x)

A

¥ = self.avgpoolix)
- Sl . g Peak UsAGE
¥ = torch.TLattenix, 1)

x = self.fc(x) 1675

) Megabytes
return self.loss_fn{x, target)

esnetiarch, block, layers, skkwargs):
return ResNet(block, layers, skkwargs)

MaxiMum CAPACITY

/974

egabyies

OPyTorch > ATOM

-. @ - entry_point.py — ~/projects/remote/skyline/resnet
resnet.py entry_point.py »

import torch

import torch.nn as nn

Interactive visualizations tied to the

import resnet

codel!

def skyline_model_provider():
return resnet.resnet50().cuda()

‘ 11 hef skyline_input_provider(batch_size=1):
return |{
torch.randn((batch _size, 3, 224, 224)).cuda(),
torch.randint(low=0, high=1000, size=(batch_size,)).cudal(),

def skyline_iteration_provider(model):
optimizer = torch.optim.SGD(model.parameters(), lr=1le-3)

bef skyline_input_provider(batch_size=1):

optimizer.step()
return 1teration

~/projects/remote/skyline/resnet/entry_point.py* 1111

Ll Skyline

& Training Throughput

THROUGHPUT

o7

samples/second

Weights

PREDICTED MAXIMUM

181

samples/second

i

= Peak Memory Usage

PEAK USAGE

358

Megabytes

Activations

MAXIMUM CAPACITY

7974

Megabytes

Untracked

I

L&

Showing predicted performance *

Python 0 GitHub -0 Git (D) @ 1 update

Interactive In-editor Performance Visualizations

S ky I I n e and Debugging for DNN Training

UNIVERSITY OF

% TORONTO

7\ VECTOR
INSTITUTE

Learn how to use Skyline to:

v |dentify run time and
memory bottlenecks

v/ Tune batch sizes during
development

v Proactively design models
with performance in mind

Skyline works with PyTorch models in Atom

pip install skyline-cli && \
apm install skyline

et

et resne

emote):
LAY ET S L1
layers.append(block(self.inplanes, planes, stride, downsample, self.group
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes % block.expansion
_in rangel(l, blocks):
layers.append({block({self.inplanes, planes, group .groups,
base width=self.base width, dilation=self.dilation,
norm_layer=norm_Llayer)})

def forward(self, x, target):

¥ = self.convlix)

x = self.bnl(x)

¥ = self.relulx)

¥ = self.maxpool{x)

x = self.layerl{x])
x = self.layer2{x]
¥ = self.layer3(x)
x = self.layerd(x)

¥ = torch.flatten{x, 1)
¥ = self.fc(x)

resneti{arch, block, layers, skkwargs):
return ResNet(block, layers, skkwargs)

t1B(#*xkwargs):

projects/remaote/skyling/resnet/resnet.py 1911

nnnnnnnn

P ICTED Ma
182
ples/sec

PeEaK UsaGE
1575
abyt

M A

O PyTorch

DNN Training and Inference :
Challenges

3. Methodology

Challenges for Metrics & Profiling

Specialized hardware for DNN training is a hot research area

:- G

Cerebras
Huawel Wafer-Scale
Da Vinci Engine

Nvidia
GPU

Cache/Buffer & E Sl R i

Accelerators are specially optimized for DNN training

Habana
Gaudi

30

Challenges for Metrics & Profiling (2)

Measuring statistical efficiency require end-to-end training

MLPerf Benchmark Training tir{':o‘:lcs';'Vidia P100
ResNet-50 147 2
Mask R-CNN 83 39
Transformer 31 16
MiniGo 73 14

Benchmarking could take many hours '
even on powerful hardware _

Challenges for Metrics & Profiling (3)

Option #1: On simulator Option #2: On FPGA/ASIC

Simulator Speed

System level
intel' @
STRATIX
inside .
.-
Real silicon |

Source: David Kaplan, When hardware must just work

End-to-end training is prohibitively slow

Expensive and require
considerable effort

32

Performance
bottlenecks in DNN
Training

Analysis &
Optimizations

33

DNN Training and Inference :
Trends and State-of-the-Art

DNN Training and Inference :
Trends and State-of-the-Art

1. Memory is still an Issue

Gist: Efficient Data Encoding for
Deep Neural Network Training

Illllxlxlllll'l'l'q

2018

36

Our Insight

Timeline | | |
Feature
map Generated 15t use 2" use
Baseline Feature map stored in FP32 format
Our ‘ X >
approach Encode()\ Smaller format between 2 uses /Decode()

37

Layer-Specific Encodings

* Key ldea:
— Use layer-specific compression

* Can be both fast and efficient

* Can be even lossless
— Usually difficult for FP32

Relu Importance

B Reclu—>Pool B Relu/Pool->Conv B Others

100% —1--

30% —T--

60% —--

40% —1--

20 ==

Breakdown within feature maps

0%
" AlexNet (256) = NiN (256) ' Overfeat (256) = VGG16 (64)

Significant footprint is due to Relu layer
CNTK Profiling

Inception (64)

39

Relu -> Pool

Relu Backward Propagation

Input Feature Output Feature
Map (X) Map (Y‘)/
Input Output ‘/
Gradient (dX) Gradient (dY)
dX = (Y, dY)

dx =y >07dy:O0;

Binarize - 1 bit representation
(Lossless)

Relu/Pool -> Conv

Sparsity

Sparsity analysis on VGG16 (10 epochs)

Sparse Storage Dense Compute
(Lossless)

41

Opportunity for Lossy Encoding

Precision reduction in forward pass quickly degrades
accuracy

42

Delayed Precision Reduction

Training with Reduced Precision

1000/0 _-"""""""""'""'
90% —f
80%
70%
60%
50%
40%
30%
20% =700 O Bascline—FP32 + Backward—FP16 ==~~~

10% —f------ All-FP16 X Gist-FP§ [===="
0% | | | | | | | |

0 10 20 30 40 50 60 70 80 90
Number of epochs

Training error rate

Delayed Precision Reduction
(Lossy)

A3

Proposed System Architecture - Gist

w
Lt

L
‘‘‘‘‘‘‘
‘‘‘‘‘‘‘‘
L]

Execution graph

O. jo,
./'.\
/I @
O
Identifies encoding Modified execution
opportunity graph
Efficient memory
sharing Memory allocation

for new data
structures

Compression Ratio

[N

A [

¥ e
I I

Memory footprint ratio
against CN'TK baseline
¥

=

= LA
pe pe
|

[Lossless B Lossless + Lossy

| | | | | - |
AlexNet NIiN Overfeat = VGGI16 ' Inception ' geoMean

Baseline

Up to 2X compression ratio
With minimal performance overhead

45

Gist Summary

* Systematic memory breakdown analysis for image classification

* Layer-specific lossless encodings
— Binarization and sparse storage/dense compute

* Aggressive lossy encodings
— With delayed precision reduction

* Footprint reduction measured on real systems:
— Up to 2X reduction with only 4% performance overhead
— Further optimizations - more than 4X reduction

Machine Translation)

WT 47

Echo: Compiler-based GPU Memory
Footprint Reduction for LSTM RNN Training

Bojian Zheng et al.

ISCA 2020 47

B Features Workspace memory
B Parameter gradients [Parameters

-
&N
Gl
o
—

User specified %ﬁeﬁwﬁ
architecture differentiation

Total memory consumed
=
0,
o

LFP construction 5GB |
and optimization -
(minutes)
Rebuild]
Tm:{lyﬂm‘.-%ﬁl:::ﬂp 5taﬁr:gr_a|:_|h 'Fi_'iﬂ'l AT TIT Zlf' H, 0GB
rematerialization 7SI E t r < 5 O O 2® T H @_/W W
REE =114 T O § » ®& ® O = © &
e 'n w E w = | o ")
s © 3 = % & » g 3 Z
= s | Yy Fyv] — % _l
NN < o T o O 2 0
S 2 o BN N o 4 &5 0w §
N R L e 2 YT Y 2 >
S 2 N N S @
o o o 2 -y
E ()]

CHECKMATE: BREAKING THE MEMORY WALL
WITH OPTIMAL TENSOR REMATERIALIZATION

Paras Jain et al. (UC Berkeley)

MLSys 2020

48

There are many more

* NeurlPS 2019

* Another paper at ISCA 2020 (jpeg encoding for CNNs)
* Tempo, NeurlPS 2022

DNN Training and Inference :
Trends and State-of-the-Art

2. Distributed Training:
Algorithms and Networking

............

Priority-based Parameter Propagation (P3)
for Distributed DNN Training

Anand Jayarajan et al.

SYSML

2019

51

P3 Followups

* TicTac (MLSys’19) from UIUC
* BytePS (SOSP’'19) from ByteDance

PLink: Discovering and Exploiting Locality for Accelerated
Distributed Training on the Public Cloud-based Distributed
Systems

UW and Microsoft Research

MLSys 2020

Blink: Fast and Generic Collectives for
Distributed ML

UC Berkeley, U of Wisconsin, and Microsoft Research

MLSys 2020

Challenge 1: Ditferent server configurations

DGX1-P100 (NVLink 15t Gen, ~18GB/s) DGX1-V100 (NVLink 2" Gen, ~23GB/s)

Protocols needs to be topology aware to effectively use hardware links.

55

Challenge 2: Link heterogeneity

PCle topology NVLink topology

Ring-based collectives can only utilize homogeneous links.

56

Challenge 3: Fragmentation in multi-tenant clusters

Percentage of
Multi-GPU jobs

of GPUs

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation? EE——) Irregular topo. =2 no ring

Many cluster schedulers are not topology-aware. Existing solutions (NCCL) fall back to

Without support for efficient migration, DNN jobs PCle if they cannot form a NVLink ring.

must embrace fragmentation to avoid queuing delays. 57

How Blink handles topology heterogeneity

Topology Heterogeneity

Different server configurations

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)

Blink

Probe available links at job run time

Concurrent data transfer over
heterogenous links

Spanning trees (v.s. Rings) are more
flexible and optimal.

NCCL-compatible API, seamless
integration with TF, PyTorch, etc.

58

Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang'?, Yifan Bai!, Gennady Pekhimenko??

1 | 2 ¢ VECTOR
7+ Computer Science INSTITUTE

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

Problem: BP imposes a strong sequential dependency along layers during the

gradient computa

Key idea: We p
e Reformulate BP

ropose scaling BP by Paral
HNtE 3 SCan eperaheﬁ e rnrnnnnnnnnnannnnnna

tions.

lel Scan Algorithm (BESA):

e Scaled b alc ste

ed Py IIeI@rI{J

Bl |6 7| |8

\

Key Results: G(Iog\)vs G)(n) steps on parallefsystems\ N

0910 108 o o b > 110} ofas *sﬂpﬁ?

Back-propagation! (BP) Everywhere

How do we get the
gradients for our SGD?

! i
(|, &=
. w

TensorFlow

IRumelhart et al. “Learning representations by back-propagating
errors.”, Nature (1986)

61

BP’s Strong Sequential Dependency

X
EEE B)
SRS

e
fIX: L
‘\

Jacobian L e e “y N

Af(x)| N a B

V»l: . v) l _= e B

Strong Sequential Dependency along layers.

62

Data Parallel Training

Respects BP’s strong sequential
dependency.

Conceptually simple, widely used.

Effectively increases the batch size:

* Generalization gap?
e Batch size scaling limit?

Constraint: The model must fit in
one device.

IKeskar, Nitish Shirish et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” ICLR (2017) 63
2Shallue, Christopher J. et al. “Measuring the Effects of Data Parallelism on Neural Network Training.” Journal of Machine Learning Research 20 (2019)

Model Parallel Training

Used when the model cannot fit in one device.
BP’s strong sequential dependency limits scalability.

Prior works on pipeline parallel training*? to mitigate such problem,

but have their own limitations:

* Linear per-device space complexity.
* Trade-off between “bubble of idleness” vs. potential convergence affect.

| — n] - .
J1—2 M J1—1 J] J1+1
Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.” SOSP (2019)
?Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.” NeurlIPS (2019)

64

Rethinking BP from an Algorithm Perspective

* Problems with strong sequential dependency were
(80’), but in a much simpler context. T

* Reformulate BP as a scan operation.
* Scale BP by a customized Blelloch Scan algorithm.
* Leverage sparsity in the Jacobians.

65

What is a Scan?! Operation?

Binary, associative operator: + ldentity: O

Input sequence: 1 2 3 4 5 6 7

A

g e

A
N

Exclusive scan: 0 1 3 6 10 15 21

Compute partial reductions at each step of the sequence.

Blelloch, Guy E. "Prefix sums and their applications”. Technical Report (1990)

Linear Scan

1 2
Step: executing the I
operator once. { 3

Number of Elements (n)

Worker (p): an instance of execution;

e.g., a core in a multi-core CPU

On a single worker: perform scan
linearly; takes n steps.

With more workers: Can we achieve
sublinear steps?

1 10

115

121

Blelloch Scan: @) Up-sweep Phase

1 3 4 5 6 8

l l l

1 7/ 1 11 1 15

Up-sweep 1 1
A B 10 1 26

1

| A+B

Compute partial sums
via a reduction tree.

Blelloch Scan: @ Down-sweep Phase

Parallel

Down-sweep

A B
il |
B A+B

Combine partial sums
across branches.

1 2 3 4 S 6
1 l 1
1 3 1 7 111
l
10
10
o
3 O 11
1 ¢ 3 3 S 10
¢ 1 3 6 10| | 15

Logarithmic
steps along the
critical path.

2logn <

,

Blelloch Scan: Efficiency

1] 2
1
| 3
3
1 O
O 1

Reformulate BP as a Scan Operation i
J.11=
Binary, associative operator: +A ¢ B=BA Identity: ["

mueseaserce: (@ B B 1 B [

Exclusive scan:)

Key Insight: matrix multiplication in BP is also binary & associative!

/1

Scale BP by
Blelloch Scan

Logarithmic
steps along the | 2logn <
critical path!

Down-sweep

A .

| Matrix
_;B multiplications are
noncommutative.

k-

-

4 -
.

e S S S R S
e T T —————

—————

Our method produces gradients mathematically equivalent to BP.

Reconstructs the Original BP Exactly

The Jacobians are multiplied in a different order = numerical differences.

Empirically show that such differences do not effect convergence.

Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd)

2

Y Baseline, train
L -+ Blelloch, train
bl

P
o,
* "_i.:_ P
v "'i,'
423,
T
o
': l'-'-n ll"l-]]
L T)
lh..ﬁ.. .'l
2000 4000 6000 8000

Ilterations (# of batches)

(a) Training loss per iteration.

n
n
o

-l

2.27

2.0 1

1.8

1.6

14

Baseline, test
-« Blelloch, test

0 2000 4000 6000 8000

Iterations (# of batches)

(b) Test loss per 1iteration.

/3

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

* e.g., 1t convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
* Generated one row at a time by passing basis vectors into Op Grad () (the VJP function).

Conventional ML algorithms avoid using Jacobians directly (including
BP).

1]

[a]

0]

ol

e o]

Cdc

Cdc Ca

Conv2d,,

Conv2d,, ,(

535
N -

B Jacobians:

B i flip .com b

‘mo00000

‘om00000

74

The Jacobians of Many Operators are Sparse

Non-zeros | Possible Zeros B Guaranteed Zeros

Conv2d RelLU MaxPool2D

Guaranteed zeros:

Known ahead of training time.

Deterministic pattern.

Potentially better Sp GEMM
performance.

First three ops of VGG-11 on CIFAR- | Convolution| RelU Max
10 Pooling

Spar5|ty 0.99157

0.99998 0.99994 75

Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,
generate directly into Compressed Sparse Row (CSR):

I data g
Conv2d, W 1 2 03 indices
0 1 2 2 4 Bullud \

First three ops of | Convol RelU Max
VGG-11 on CIFAR-

10

Complexity Analysis

Per-step Complexity (C): runtime of each step.

Runtime:
BPPSA BP

CBP}SA O(logn) vs. CBPG(rI)

Performance benefits:

. In-place
1. Large n: deep network, long sequential dependency. P
2. Reducing per-step complexity: SpGEMM. Up-sweep ~ Down-sweep
A B A B

Constant per-device space complexity!

1 BA B AB

Methodology: Benchmark

Model: RNN Task: Bitstream Classification

h)'=tanh| W, x¥+ b, + W, h¥ +

—>

bhh

B-R00 -8 Bt

X Bernoulli(0.05+C ¢k x0.1)¢

78

Methodology: Environment

Hardware: RTX 2070 RTX 2080 Ti
Baseline: CUDNN 7.5.1 7.6.2
O PyTorch 1.1 1.2

Implementation: custom CUDA 10 kernels.

End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

2.4

AN

2

Training Loss

— Baseline = BPPSA

Numerical differences do not effect
convergence.

0

500

1000

1500

2.17x speedup on the overall training time.

2000 2500 300

Wall-clock Time (s)

80

Speedup

11 ‘ ‘
1.1 I I I I

Backward Pass Speedup over Baseline

108x

e Length (T)

Sensitivity Analysis: Model Length

Sequence length (T) reflects the
model length n.

BPPSA scales with the model
length (n);

until being bounded by the
number of workers (p).

81

Speedup

16
OléJ

Sensitivity Analysis: Number of Workers

Backward Pass Speedup ov

11111

Fraction of GPU per Sample (1/B)

Fraction of GPU per sample (1/B)

reflects the number of workers p.

BPPSA scales with the number of
workers (p).

82

Sensitivity Analysis: 2070 v.s. 2080Ti

#SMs(2070) < #SMs(2080Ti) SM: Streaming Multiprocessor;
— Latency(2070) > Latency(2080Ti) i.e., “Parallel Cores”.

2070 m2

Latency (ms) per Iteration
Latency (ms) per Iteration

11111

Sequence Length (T) Fraction of GPU per Sample (1/B)

More Results in the Paper

* End-to-end benchmarks of GRU training on IRMAS.
— A more realistic version of the RNN results.

* Pruned VGG-11 retraining on CIFAR-10.

— Microbenchmark via FLOP measurements.

— Evaluate the effectiveness of leveraging the Jacobians’ sparsity in
CNN:Ss.

Conclusion

BP imposes a strong sequential dependency among layers during the
gradient computations, limiting its scalability on parallel systems.

We propose scaling Back-Propagation by Parallel Scan Algorithm
(BPPSA):

* Reformulate BP as a scan operation.
* Scale by a customized Blelloch scan algorithm.
* Leverage sparsity in the Jacobians.

Key Results: ©(log n) vs. ©(n) steps on parallel systems.
Up to 108x speedup on the backward pass (— 2.17x overall speedup).

DNN Training and Inference :
Trends and State-of-the-Art

3. Inference:
More Solid Quantization and
Pruning

Speed and Size Tradeoffs for Original and Pruned Models

[on # e

o ;F = .f‘(pJ'

a5

oD
=

Top 1 Accuracy (%)

&5
06
3 o4
7y
S 92
[
S ® ®
ag
o 88
o
o 86
l_
84
10° 10 10° 10° 10"
Number of Parameters Number of FLOPs
—8— MabieNet-v2 (2018) ResNet (2016) —8— VGG (2014) —8— EfficientNet (2019)
MaohileMNet-v2 Pruned ResNet Pruned YWEGE Pruned

What is the State of Neural Network Pruning?

MIT

MLSys 2020

* We aggregated results across
81 pruning papers

* Mostly published In top venues

* Corpus closed under
experimental comparison

of LI

arXiv only

NeurlPS 16
ICLR 11
CVPR 9

ICML 4

ECCV 4

BMVC 3

|[EEE Access 2

Other 10

88

90

Top 5 Accuracy (%)

-— VGG (2014)
VGG Pruned

Ve

10° 10"

Number of FLOPs

=@ ResNet (2016)
ResNet Pruned

—e— EfficientNet (2019)

89

ResNet-50 on ImageNet

0 s

o
co 5 . 2015
=9 .
%5 mm 20106
c 3 mm 2017
Sf -4 mm 2018

o == 2019

e

= -6

1 2 2} 8

Compression Ratio

(Dataset, Architecture, X metric, Y metric, Hyperparameters) - Curve

90

Change in
Top-1 Accuracy (%)

Change in
Top-1 Accuracy (%)

4

M

o

VGG-16 on ImageNet

1 2 ! 8

Compression Ratio

N

2 4 6
Theoretical Speedup

16

AlexNet on ImageNet

N

2 4 8 16
Compression Ratio

1 2 3

Theoretical Speedup

ResNet-50 on ImageNet

AN

1 2 4 8
Compression Ratio

AN

2 3
Theoretical Speedup

16

2015
H 2016
2017
2018
mm 2019

o1l

VGG-16 on ImageNet AlexNet on ImageNet ResNet-50 on ImageNet

4 >
) 0 4 0 %
> 9 ”\ U .U
= § I Yo, -1 w
D ol
23 0 i ~— ¥ -2
o O
c < D
O Y -2 -3
A 2
° o ; 4 w2015
-4 A -
]
1 2 4 8 16 2 4 8 16 1 2 4 8 16 2016
Compression Ratio Compression Ratio Compression Ratio 2017
4 0.0 \ 0 * e 2018
2
S -0.5 _1 "
A 201
3 2 : R— . 019
© -1.0
D = 2
o) 3 —_
0
S 8 -15
o <
O« -3
{5- _2 Vv _2.0
&)
- -2.5 —4
—4 A
2 4 6 1 2 3 2 3
Theoretical Speedup Theoretical Speedup Theoretical Speedup

92

* Presence of comparisons:
» Most papers compare to at most 1 other method
* 40% papers have never been compared to
* Pre-2010s methods almost completely ignored

* Reinventing the wheel:
* Magnitude-based pruning: Janowsky (1989)
* Gradient times magnitude: Mozer & Smolensky (1989)
* “Reviving” pruned weights: Tresp et al. (1997)

93

AcCcuracy

—
©

S
0o

O
~

O
o

-
U

1

Cl FAR-VGG

2 4 38 16
Compression Ratio

32

AARS,

1

ResNet 50

Method A
Method C
Method B
Method D
Method E

2 4 8 16
Compression Ratio

32

94

0.70

AcCcuracy
e e
U @) o)
U1 - Ul

O
U
o

0.45

0.40

ResNet-18 on ImageNet

—8— Method A
—a&— Method C
—i— Method B
—4— Method D

1 2 4 8
Compression Ratio

16

1

2 4 8 16 32
Theoretical Speedup

95

AcCcuracy
©c o O
~J oo O

!
o

O
U

ResNet-560 on CIFAR-10

- \\eights A
- \\eights B

1 2 4 8 16 32 064
Compression Ratio

96

Memory-Driven Mixed Low Precision Quantization for
Enabling Deep Network Inference on Microcontrollers

Universita’ di Bologna, Bologna, Italy

MLSys 2020

DNN Training and Inference :
Trends and State-of-the-Art

4. ML Compllers

Existing Efforts: Pros and cons

* TVM, XLA, Glow, PlaidML

— Don’t perform well for training
— TVM can be 2-3 orders of magnitude worse on important kernels

* We need a new ML compiler with representative IR:

— Recent papers from our group: DietCode (MLSys’'22), Roller (OSDI'22),
Hidet (ASPLOS’'23)

CSC 2224: Parallel Computer
Architecture and Programming
DNN Training and Inference :

Challenges, Trends, State-of-the-Art

Prof. Gennady Pekhimenko
University of Toronto
Fall 2022

	CSC 2224: Parallel Computer Architecture and Programming DNN T
	Review #7
	DNN Training and Inference : Challenges, Trends, State-of-the-A
	Systems/Architecture Is a Servant for ML
	Slide 5
	DNN Training and Inference : Challenges 1. Benchmarking
	Machine Learning Benchmarking and Analysis
	Slide 8
	Training Benchmarks for DNNs (TBD)
	Our Focus: Benchmarking and Analysis
	MLPerf Training Results v0.6 (July 10th, 2019)
	MLPerf Inference Results v0.5 (Nov. 6, 2019)
	MLPerf becomes de-facto standard
	MLPerf Training Benchmark
	MLPerf Inference accepted to ISCA 2020
	DNN Training and Inference : Challenges 2. Tools and Metrics
	Slide 17
	Performance Metrics
	Slide 19
	BERT: Memory Profile
	Network Profiling
	Skyline Demo at MLSys 2020
	Interactive In-editor Performance Visualizations and Debugging
	Tired of not knowing why your model is slow and/or uses up so m
	Tired of not knowing why your model is slow and/or uses up so m (2)
	Interactive In-editor Performance Visualizations and Debugging (2)
	Slide 27
	Interactive In-editor Performance Visualizations and Debugging (3)
	DNN Training and Inference : Challenges 3. Methodology
	Challenges for Metrics & Profiling
	Challenges for Metrics & Profiling (2)
	Challenges for Metrics & Profiling (3)
	Slide 33
	DNN Training and Inference : Trends and State-of-the-Art
	DNN Training and Inference : Trends and State-of-the-Art 1. Me
	Gist: Efficient Data Encoding for Deep Neural Network Training
	Our Insight
	Layer-Specific Encodings
	Relu Importance
	Relu -> Pool
	Relu/Pool -> Conv
	Opportunity for Lossy Encoding
	Delayed Precision Reduction
	Proposed System Architecture - Gist
	Compression Ratio
	Gist Summary
	Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RN
	CHECKMATE: BREAKING THE MEMORY WALL WITH OPTIMAL TENSOR REMATER
	There are many more
	DNN Training and Inference : Trends and State-of-the-Art 2. Di
	Priority-based Parameter Propagation (P3) for Distributed DNN T
	P3 Followups
	PLink: Discovering and Exploiting Locality for Accelerated Dist
	Blink: Fast and Generic Collectives for Distributed ML
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Scaling Back-Propagation by Parallel Scan Algorithm
	Executive Summary
	Back-propagation1 (BP) Everywhere
	BP’s Strong Sequential Dependency
	Data Parallel Training
	Model Parallel Training
	Rethinking BP from an Algorithm Perspective
	What is a Scan1 Operation?
	Linear Scan
	Blelloch Scan: ① Up-sweep Phase
	Blelloch Scan: ② Down-sweep Phase
	Blelloch Scan: Efficiency
	Reformulate BP as a Scan Operation
	Scale BP by Blelloch Scan
	Reconstructs the Original BP Exactly
	Jacobians are Memory & Compute Hungry
	The Jacobians of Many Operators are Sparse
	Fast Sparse Jacobians Generation
	Complexity Analysis
	Methodology: Benchmark
	Methodology: Environment
	End-to-end Training Speedup
	Sensitivity Analysis: Model Length
	Sensitivity Analysis: Number of Workers
	Sensitivity Analysis: 2070 v.s. 2080Ti
	More Results in the Paper
	Conclusion
	DNN Training and Inference : Trends and State-of-the-Art 3. In
	What is the State of Neural Network Pruning?
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Memory-Driven Mixed Low Precision Quantization for Enabling Dee
	DNN Training and Inference : Trends and State-of-the-Art 4. ML
	Existing Efforts : Pros and cons
	CSC 2224: Parallel Computer Architecture and Programming DNN T (2)

